Description
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
Input
第一行:三个整数,v(背包容量,v<=200),n(物品数量,n<=30)和t(最大组号,t<=10);
第2..n+1行:每行三个整数wi,ci,p,表示每个物品的重量、价值、所属组号。
Output
仅一行,一个数,表示最大总价值。
Sample Input
10 6 3
2 1 1
3 3 1
4 8 2
6 9 2
2 8 3
3 9 3
Sample Output
20
解题思路:f[j]表示花费费用j能取得的最大权值,状态转移方程为:
f[j]=max{f[j-w[a[i,k]]]+v[a[i,k]],f[j]|j>w[a[i,k]]}
(1<=i<=t,m>=j>=0,1<=k<=a[i,0])
f[v]即为所求。
时间复杂度: O(t^2*v)
程序:
var
function max(x,y:longint):longint;
begin
end;
begin
end.