研究对象:包括短时强降水、暴风雨、暴雪、冰雹等在内的极端降水天气
创新核心:创建了端到端建模降水物理过程的神经演变算子,实现了深度学习与物理规律的无缝融合。在神经网络中用于模拟和描述物理演变过程的一类算子,用于建模降水物理过程中的中尺度运动。这些神经演变算子在整个神经网络中充当重要的角色,通过它们可以对降水过程中的运动和物理特性进行有效的学习和预测。
模型整体结构
空间自适应归一化技术
为了使演化网络Φ的预测结果能够有效地影响生成网络θ。
这种技术确保在每次前向传播时,随机生成网络θ中的每个解码层的激活均值和方差都被替换为从确定演化网络Φ的预测结果x′′1:𝑇〖x′′〗_(1:T)计算得出的相应空间统计信息。这样,生成网络θ在预测时可以根据物理学规律自适应地结合演化网络ϕ的预测结果,同时捕捉雷达观测到的对流尺度的细节,从而获得具有多尺度预测技能的结果,其最大预报提前时间达到3小时。
确定演化网络Φ
演化网络采用编码器-解码器架构
根据过去的雷达场 𝑥−T0:0x_(-T_0:0)预测未来所有时间步骤的运动场 𝑣1:𝑇v_(1:T)和强度残差𝑠1:𝑇s_(1:T) 。这种完全依赖于过去和未来时间步骤之间的关系有助于缓解序列预测中的非平稳性问题。
而且,演化编码器、运动解码器和强度解码器都是神经网络(图b),使得其具备了以前平流方案难以捕捉的非线性演化建模能力。
演化算子以当前雷达场 x0x_0为输入,预测未来的雷达场 𝑥1:𝑇x_(1:T)。在每个时间步骤中,上一个时间步骤预测的雷达场 x″𝑡−1〖"x″" 〗_(t-1) 通过运动场 𝑣𝑡v_t进行一步平流演化,得到 x′𝑡〖"x′" 〗_t,然后将强度残差 s𝑡"s" _t加入,得到 x′𝑡 〖"x′" 〗_t 。
这个算子使得所有的运动场和强度残差都可以通过梯度下降的优化方法进行端到端的学习,而这是现有平流方案所无法实现的。在用反向传播学习算子时,他们在每个时间步骤之间停止梯度传递,以防止信息干扰。这样可以缓解由演化算子中不连续插值引起的数值不稳定性,因为整个系统的基础是欠定的。