Check the difficulty of problems
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 7053 | Accepted: 3051 |
Description
Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms:
1. All of the teams solve at least one problem.
2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.
Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.
Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?
1. All of the teams solve at least one problem.
2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.
Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.
Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?
Input
The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.
Output
For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.
Sample Input
2 2 2 0.9 0.9 1 0.9 0 0 0
Sample Output
0.972
概率dp,要求求出所有队伍至少求出一道题,同时冠军队伍至少求出N道题的概率,注意冠军队伍可以不止一支。
可以转化成 所有队伍至少求出一道题的概率 - 所有队伍求出1~(N-1)道题的概率。
一开始求至少求出一道题的概率时理所应当地以为等于 1 - 队伍一道题都求不出来的概率,
事实上队伍求出题目的概率可以不等于1。所以还需要求出 队伍至多求出M道题的概率 和 队伍至多求出N-1道题的概率,
这样上面至少一题和1~(N-1)的概率就可以解了。
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <stack> #include <bitset> #include <queue> #include <set> #include <map> #include <string> #include <algorithm> #define FOP freopen("data.txt","r",stdin) #define inf 0x3f3f3f3f #define maxn 1000010 #define mod 1000000007 #define PI acos(-1.0) #define LL long long using namespace std; int M, T, N; double dp[1002][32][32]; //第i队在前j题中做出k道题的概率 double p[1002][32]; //第i队做出第j题的概率 double s[1002][32]; //第i队至多做出k道题的概率 int main() { while(scanf("%d%d%d", &M, &T, &N) && (M != 0 || T != 0 || N != 0)) { memset(dp, 0, sizeof(dp)); memset(s, 0, sizeof(s)); for(int i = 1; i <= T; i++) { for(int j = 1; j <= M; j++) scanf("%lf", &p[i][j]); } for(int i = 1; i <= T; i++) { dp[i][1][0] = 1 - p[i][1], dp[i][1][1] = p[i][1]; for(int j = 2; j <= M; j++) { for(int k = 0; k <= j; k++) { if(k == 0) dp[i][j][k] = dp[i][j-1][k] * (1 - p[i][j]); else dp[i][j][k] = dp[i][j-1][k-1] * p[i][j] + dp[i][j-1][k] * (1 - p[i][j]); } } s[i][0] = dp[i][M][0]; for(int k = 1; k <= M; k++) s[i][k] = s[i][k-1] + dp[i][M][k]; } double ans1 = 1, ans2 = 1; for(int i = 1; i <= T; i++) ans1 *= s[i][M] - s[i][0], ans2 *= s[i][N-1] - s[i][0]; printf("%.3f\n", ans1 - ans2); } return 0; }