transpose在numpy和torch中的不同

这篇博客探讨了numpy和torch中transpose函数的区别。numpy的transpose需要指定新的轴顺序,而torch的transpose仅用于交换两个特定的轴。尝试在numpy中使用torch的transpose语法将引发ValueError。
摘要由CSDN通过智能技术生成

numpy和torch中transpose的功能不同

numpy.ndarray.transpose的官方文档
torch.transpose的官方文档

numpy.transpose需指定一个新的axis的顺序

import numpy as np
array_ = np.arange(24).reshape(1,2,3,4)
print(array_)
# [[[[ 0  1  2  3]
#    [ 4  5  6  7]
#    [ 8  9 10 11]]
# 
#   [[12 13 14 15]
#    [16 17 18 19]
#    [20 21 22 23]]]]

array_t = array_.transpose([0,3,2,1])
print(array_t)
# [[[[ 0 12]
#    [ 4 16]
#    [ 8 20]]
# 
#   [[ 1 13]
#    [ 5 17]
#    [ 9 21]]
# 
#   [[ 2 14]
#    [ 6 18]
#    [10 22]]
# 
#   [[ 3 15]
#    [ 7 19]
#    [11 23]]]]

array_tt = array_.transpose([0,3,2,1])
print(array_tt)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值