google在Big Data 應用上的技術與論文介紹

转载自:http://techorange.com/2013/05/14/big-data-beyond-mapreduce/

目前 Big Data 的相關應用有不少都是從 MapReduce 衍生而出的,但,若把焦點移到即時資料(Real-Time Data)的需求上時就會發現它的不足之處。

因此,本篇文章將與各位讀者分享,從 Google 發佈 GFS、Big Data 與 MapReduce 這些技術開始,到這些技術發展的現況與其所遭遇到的瓶頸,以及 Google 為了解決這些問題提出了哪些因應的技術。

  • MapReduce,GFS 與 Bigtable,帶動了 Big Data 應用技術的發展

Google 在 2003 年發表了第一篇論文 〈The Google File System〉。文中敘述,GFS(Google File System)是一個分散式檔案系統,由數百個叢集(Cluster)所組成。簡單來說,儲存在 GFS 的檔案會被切割成  64 MB 左右的資料塊(Chunk),其利用重複的方式(Redundant Fashion)儲存在叢集中。

2004 年,Google 發表了 MapReduce 論文 〈MapReduce: Simplified Data Processing on Large Clusters〉,如今,MapReuce 可以說幾乎已經跟 Big Data 劃上等號了。

Google 利用 MapReuce 演算法來計算查詢索引(Search Index),讓使用者能在最短的時間內從 Internet 上找到自己所需要/查詢的資料。

2006 年,Google 發表了 Bigtable 論文 〈Bigtable: A Distributed Storage System for Structured Data〉,而 Bigtable 帶領了許多 NoSQL 資料庫的技術應用發展,像是 Cassandra、HBase 等等。

其中,Cassandra 的架構就整合了 Bigtable(資料模型、SSTables 及 Write-Through-Logs)與 Amazon 的 Dynamo 資料庫(Peer-to-Peer Clustering Model)。

  • Percolator,能夠解決 MapReduce 無法處理個別更新的問題

隨著 Internet 的網頁呈現指數增加,MapReduce 每次都要全面地重新計算查詢索引是非常不切實際的。因此,Google 為了提升系統的效能,開發了一個更有價值的分散式計算系統:Percolator。

Google 在 2010 年發表了相關的論文 〈 Large-scale Incremental Processing Using Distributed Transactions and Notifications〉,文中敘述 Google 如何在網路搜尋索引(Web Search Index)的技術持續地維持精進。例如,MapReduce 做計算時無法處理局部的更新,因此,在效能的改善部份是很有限的,而 Percolator 則彌補了這個弱點。

但是,各位讀者千萬不要誤以為 Percolator 是用來取代  MapReduce 的。

Percolator 是建立於 Bigtable 之上的應用,它加入了對表(Table)與紀錄(Row)的交易(Transaction)與鎖定(Lock)機制,也就是當 GFS 做表的掃描時,一旦發現有更新過的紀錄,就會透過觸發程序(Trigger)告知這個改變,再依據讀取(Read)或寫入(Write)的請求,在不同階段的工作過程中,針對資料表或記錄做鎖定或釋放的管理機制。透過這樣子的方式,來完成局部個體的更新。

  • Pregel:用來處理網絡社交關係的圖型結構計算

Google 為了做網路社交關係的圖型結構分析,開始針對圖型結構探勘做相關的研究與發展,並在 2010 年發表了相關的論文 〈Pregel: A System for Large-Scale Graph Processing〉。

由於針對大型的圖型結構做處理是非常複雜也具有挑戰性的,尤其是網路的分散式處理讓難度又提高了許多,因此,Pregel 的計算要比MapReduce 的計算要複雜許多,其主要是利用BSP(Bluk Synchronous Parallell)、PageRank、Bipartite Matching 等演算法來做計算的實踐。而在論文中你也可以看到上述這些方法的實踐。

  • Dremel:只要花幾秒鐘時間就可以分析 PB 等級的數據

在 2010 年,Google 還同時發表了一篇關於 Dremel 的論文,內容敘述 Dremel 是一個利用 SQL-like Language 的互動式資料庫系統,用來儲存結構化資料。

Dremel 的特色是,以列儲存為主,以減少 CPU 與磁碟的讀取,進而達到快速讀取局部資料的目的;將查詢的任務切割成多個小任務,以達到平行處理的目的;支援 Nested 數據模型,但只提供唯讀功能。

  • Big Data 的相關應用,需要的不只是 MapReduce

Google 並沒有在提出 MapReduce 之後,就停止了查詢技術的發展,他們不斷地發展新的技術以補強 MapReduce 的不足之處,這對 Big Data 的發展是有益的。

畢竟,MapReduce 不是萬能的,以目前的狀況來說,還是有許多的問題尚待解決,不過,Google 所發展出來的技術,帶領了許多其他自由軟體的發展,像 Apache Drill、Apache Giraph 以及 Stanford’s GPS 等等,這或許是身為使用者的我們最樂於見到的發展。

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值