B 酱的无向图 题解

7 篇文章 0 订阅
1 篇文章 0 订阅

2 B 酱的无向图

2.1 题目描述

B 酱有个 n 个节点的无向图,初始时图中没有边。他依次向图中加
了 m 条无向边,并询问你加入每条边后图中桥的个数是多少。被删除后
能使图中连通块个数增加的边就称为桥。注意图中可能会出现重边及自环。

2.2 输入格式

输入第1行为三个正整数 n, m, p,p 的含义将在输出格式中介绍。
接下来 m 行,每行两个正整数 u, v,表示新加入的一条边。

2.3 输出格式

为减少输出量,设 ansi 表示加入第 i 条边后图中桥的个数,请输出
(Πmi=1(ansi+1))modp ( Π i = 1 m ( a n s i + 1 ) ) mod p ,其中 Π Π 表示连乘。

2.4 输入样例一
4 4 233
1 2
2 3
3 4
1 4
2.5 输出样例一
24
2.6 输入样例二
6 7 233
6 5
1 2
3 2
1 2
4 6
4 5
1 1
2.7 输出样例二
220
2.8 样例解释
对于样例一,实际答案为 1,2,3,0。
对于样例二,实际答案为 1,2,3,2,3,1,1。
2.9 数据范围与约定

测试点编号 n, m
1,2300 1 , 2 ≤ 300
3,4,53000 3 , 4 , 5 ≤ 3000
61105 6 ≤ 1 ∗ 10 5
72105 7 ≤ 2 ∗ 10 5
83105 8 ≤ 3 ∗ 10 5
9,105105 9 , 10 ≤ 5 ∗ 10 5
对于 100% 100 % 的数据,保证 1u,vn,1p109 1 ≤ u , v ≤ n , 1 ≤ p ≤ 10 9


对于所有不会构成环的边,读入之后建树。建树时维护深度和父节点。
对于所有会构成环的边,暴力向上爬,把环中所有点用并查集缩点。
树上没有被缩起来的点即为桥。

由于每条边只会被缩一次,所以时间复杂度为 O(nα(n)) O ( n ∗ α ( n ) )

#include<cstdio>
#include<cstring>
#include<algorithm>
#define max(x,y) ((x)>(y) ? (x) : (y))
#define min(x,y) ((x)<(y) ? (x) : (y))
#define N 500010
#define ll long long
using namespace std;

inline int getint() {
    char ch;
    int p=0,t;
    for(ch=getchar();ch!='-' && !(ch>='0' && ch<='9');ch=getchar());
    if(ch=='-') t=-1,ch=getchar();
    else t=1;
    for(;ch>='0' && ch<='9';ch=getchar()) {
        p=p*10+ch-48;
    }
    return t*p;
}

struct Edge {
    int to,ne;
} e[N*3];

ll acht,ans;
int n,m,p,f[N],flag[N],g[N],d[N],u[N],v[N],cnt,fa[N];

inline int getf(int x) {
    return (x==f[x] ? x : f[x]=getf(f[x]));
}

void dfs(int u) {
    d[u]=d[fa[u]]+1;
    f[u]=u;
    for(int i=g[u];i!=-1;i=e[i].ne) {
        if(e[i].to==fa[u]) continue;
        fa[e[i].to]=u;
        dfs(e[i].to);
    }
}

int main()
{
//  freopen("graph.in","r",stdin);
//  freopen("graph.out","w",stdout);
    n=getint();
    m=getint();
    p=getint();
    for(int i=1;i<=n;i++) {
        f[i]=i;
    }
    memset(g,-1,sizeof g);
    memset(fa,0,sizeof fa);
    cnt=0;
    memset(flag,false,sizeof flag);
    for(int i=1;i<=m;i++) {
        u[i]=getint();
        v[i]=getint();
        if(getf(u[i])!=getf(v[i])) {
            f[f[u[i]]]=v[i];
            flag[i]=true;
            e[cnt]=(Edge){v[i],g[u[i]]};
            g[u[i]]=cnt++;
            e[cnt]=(Edge){u[i],g[v[i]]};
            g[v[i]]=cnt++;
        }
    }
    for(int i=1;i<=n;i++) {  //用所有树边建树
        if(!d[i]) {
            dfs(i);
        }
    }
    acht=1;
    for(int i=1;i<=m;i++) {
        if(flag[i]) ++ans;
        else {
            for(int x=getf(u[i]),y=getf(v[i]);x!=y;x=f[x]=getf(fa[x]),--ans) {
                if(d[x]<d[y]) {
                    swap(x,y);     //每次让深度大的向上爬,把环内的节点并在一起。
                }
            }
        }
        (acht*=ans+1)%=p;
    //  printf("%lld\n",ans);
    }
    printf("%lld\n",acht);
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值