拔筋------拔颈

拔筋------拔颈-------------医盲
今天介绍的是一个小功法,过去属于拔筋锻炼的内容。

目前锻炼颈部的锻炼方法,一般就是俯仰旋转,拔筋可以作为这些锻炼的补充。

这个小动作,当面教一下就能明白,写成文字觉得有点费劲。这样理解吧,

把自己的脑袋想像成一个方形的,后面两个角我们称他为左角和有角。其实也就是后脑顶上两边的两个弧形高点。

直立,踮起脚尖,头稍左偏,微收下颌,右角向上拔,同时稍用力沉肩尤其是右肩,这时会感到后项右边的大筋受拉扯有酸胀麻感。

然后,放松,脚跟放下,

然后,做左边。

然后,两边多锻炼几次吧,别忘了配合俯仰旋转等动作。

然后,功效请锻炼的人自己体会。

然后,介绍完毕。


医盲先生在此介绍了四个主要的功法:站桩、摇肩、通臂劲和此篇中所说的拔筋,皆法简效宏。
近日读《黄帝内经》,金匮真言论中有一段关于五风四时的论述,“东风生于春,病在肝,腧在颈项。南风生于夏,病在心,腧在胸胁。西风生于秋,病在肺,腧在肩背。北风生于冬,病在肾,腧在腰股。中央为土,病在脾,腧在脊。”。联想至先生所传之法,又及人常说没有练功时间,则每季取两法为主来习练:冬季练站桩和拔筋,春季练拔筋和通臂劲,夏季练通臂劲和摇肩,秋季练摇肩和站桩,这样来练或可更具针对性地养护。或失偏颇,请先生指正。
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值