HDOJ---ACMSteps---2.1.6整数对

整数对

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1550 Accepted Submission(s): 648
 
Problem Description
Gardon和小希玩了一个游戏,Gardon随便想了一个数A(首位不能为0),把它去掉一个数字以后得到另外一个数B,他把A和B的和N告诉了小希,让小希猜想他原来想的数字。不过为了公平起见,如果小希回答的数虽然不是A,但同样能达到那个条件(去掉其中的一个数字得到B,A和B之和是N),一样算小希胜利。而且小希如果能答出多个符合条件的数字,就可以得到额外的糖果。 
所以现在小希希望你编写一个程序,来帮助她找到尽可能多的解。 
例如,Gardon想的是A=31,B=3 告诉小希N=34, 
小希除了回答31以外还可以回答27(27+7=34)所以小希可以因此而得到一个额外的糖果。
 
Input
输入包含多组数据,每组数据一行,包含一个数N(1<=N<=10^9),文件以0结尾。
 
Output
对于每个输入的N,输出所有符合要求的解(按照大小顺序排列)如果没有这样的解,输出"No solution."
 
Sample Input
34
152
21
0
 
Sample Output
27 31 32
126 136 139 141
No solution.
 
#include <iostream>
#include <cstdio>
#include <cstdlib>

using namespace std;
/*
思路:
假设A中去掉的数在第k+1位,可以把A分成三部分,低位,k,和高位。
A == a + b * 10^k + c * 10^(k+1)
B == a         +         c * 10^k
N == A + B == 2 * a + b * 10^k + c * 10^k * 11
其中b是一位数,b * 10^k不会进位,用10^k除N取整就可以得到b + 11c,再用11除,商和余数就分别是c和b了。
但是这里有个问题a是一个小于10^k的数没错,但是2a有可能产生进位,这样就污染了刚才求出来的b + 11c。
但是没有关系,因为进位最多为1,也就是b可能实际上是b+1,b本来最大是9,那现在即使是10,
也不会影响到除11求得的c。因此c的值是可信的。然后根据2a进位和不进位两种情况,分别考虑b要不要-1,
再求a,验算,就可以了。
迭代k从最低位到最高位做一遍,就可以找出所有可能的A。
*/
int cmp (const void* a, const void* b)
{
   return *(int *)a - *(int *)b;
}

int main()
{
    int a, b, c, n, k, s[100], count;
    while ((scanf("%d", &n) != EOF) && n)
    {
       count = 0;
       for (k = 1; k <= n; k *= 10)
       {
          c = (n / k) / 11;
          b = (n / k) - 11 * c;

          if ((b != 0 || c !=0) && b < 10)
          {
             a = (n - b * k - 11 * c * k) / 2;
             if (2 * a + b * k + 11 * c * k == n)
             {
                count ++;
                s[count] = a + b * k + c * 10 *k;
             }
          }
          b --;
          if ((b != 0 || c !=0) && b >= 0)
          {
             a = (n - b * k - 11 * c * k) / 2;
             if (2 * a + b * k + 11 * c * k == n)
             {
                count ++;
                s[count] = a + b * k + c * 10 *k;
             }
          }
       }
       if (count == 0)
       {
          printf("No solution.\n");
       }
       else
       {
          qsort(&s[1], count, sizeof(s[1]), cmp);
          printf("%d", s[1]);
          for (int i = 2; i <= count; i ++)
          {
             if (s[i] != s[i - 1])
             {
                printf(" %d", s[i]);
             }
          }
          printf("\n");
       }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值