UVaOJ712---S-Trees

712 - S-Trees

Time limit: 3.000 seconds

A Strange Tree (S-tree) over the variable set $X_n = \{x_1, x_2, \dots, x_n\}$ is a binary tree representing a Boolean function $f: \{0, 1\}^n \rightarrow \{ 0, 1\}$. Each path of the S-tree begins at the root node and consists of n+1 nodes. Each of the S-tree's nodes has a depth, which is the amount of nodes between itself and the root (so the root has depth 0). The nodes with depth less than n are called non-terminal nodes. All non-terminal nodes have two children: the right child and the left child. Each non-terminal node is marked with some variable xi from the variable set Xn. All non-terminal nodes with the same depth are marked with the same variable, and non-terminal nodes with different depth are marked with different variables. So, there is a unique variable xi1 corresponding to the root, a unique variable xi2 corresponding to the nodes with depth 1, and so on. The sequence of the variables $x_{i_1}, x_{i_2}, \dots, x_{i_n}$ is called the variable ordering. The nodes having depth n are called terminal nodes. They have no children and are marked with either 0 or 1. Note that the variable ordering and the distribution of 0's and 1's on terminal nodes are sufficient to completely describe an S-tree.

As stated earlier, each S-tree represents a Boolean function f. If you have an S-tree and values for the variables $x_1, x_2, \dots, x_n$, then it is quite simple to find out what $f(x_1, x_2, \dots, x_n)$ is: start with the root. Now repeat the following: if the node you are at is labelled with a variable xi, then depending on whether the value of the variable is 1 or 0, you go its right or left child, respectively. Once you reach a terminal node, its label gives the value of the function.

Figure 1: S-trees for the function $x_1 \wedge (x_2 \vee x_3)$

On the picture, two S-trees representing the same Boolean function, $f(x_1, x_2, x_3) = x_1 \wedge (x_2 \vee x_3)$, are shown. For the left tree, the variable ordering is x1x2x3, and for the right tree it is x3x1x2.

The values of the variables $x_1, x_2, \dots, x_n$, are given as a Variable Values Assignment (VVA) 

\begin{displaymath}(x_1 = b_1, x_2 = b_2, \dots, x_n = b_n)\end{displaymath}

with  $b_1, b_2, \dots, b_n \in \{0,1\}$ . For instance, (  x 1  = 1,  x 2  = 1  x 3  = 0) would be a valid VVA for  n  = 3, resulting for the sample function above in the value  $f(1, 1, 0) = 1 \wedge (1 \vee 0) = 1$ . The corresponding paths are shown bold in the picture.

Your task is to write a program which takes an S-tree and some VVAs and computes $f(x_1, x_2, \dots, x_n)$ as described above.

Input 

The input file contains the description of several S-trees with associated VVAs which you have to process. Each description begins with a line containing a single integer  n $1 \le n \le 7$ , the depth of the S-tree. This is followed by a line describing the variable ordering of the S-tree. The format of that line is  x i 1 x i 2  ... x i n . (There will be exactly  n  different space-separated strings). So, for  n  = 3 and the variable ordering  x 3 x 1 x 2 , this line would look as follows:

x3 x1 x2

In the next line the distribution of 0's and 1's over the terminal nodes is given. There will be exactly 2n characters (each of which can be 0 or 1), followed by the new-line character. The characters are given in the order in which they appear in the S-tree, the first character corresponds to the leftmost terminal node of the S-tree, the last one to its rightmost terminal node.

The next line contains a single integer m, the number of VVAs, followed by m lines describing them. Each of the m lines contains exactly n characters (each of which can be 0 or 1), followed by a new-line character. Regardless of the variable ordering of the S-tree, the first character always describes the value of x1, the second character describes the value of x2, and so on. So, the line

110

corresponds to the VVA ( x1 = 1, x2 = 1, x3 = 0).

The input is terminated by a test case starting with n = 0. This test case should not be processed.

Output

For each S-tree, output the line `` S-Tree # j : ", where  j  is the number of the S-tree. Then print a line that contains the value of  $f(x_1, x_2, \dots, x_n)$  for each of the given  m  VVAs, where  f  is the function defined by the S-tree.

Output a blank line after each test case.

Sample Input

3
x1 x2 x3
00000111
4
000
010
111
110
3
x3 x1 x2
00010011
4
000
010
111
110
0

Sample Output 

S-Tree #1:
0011

S-Tree #2:
0011



Miguel A. Revilla 
2000-02-09

#include <iostream>
#include <string>
#include <cstring>
#include <cstdlib>
using namespace std;

struct Tree
{
   char value;
   string name;
   Tree *left, *right;
};

int n;
int pos;
string name[1024];
char ans[1024];

inline Tree *NewNode(string sname)
{
   Tree *root;
   root = new Tree;
   root->value = '0';
   root->name = sname;
   root->left = NULL;
   root->right = NULL;

   return root;
}

Tree *BuildTree(string name[], int cur, string terminal)
{
   if (cur == n)
   {
      Tree *u;
      u = NewNode(name[cur]);
      u->value = terminal[pos ++];

      return u;
   }
   else
   {
 //     Tree *p = (Tree *)malloc(sizeof(Tree));
      Tree *p;
      p = NewNode(name[cur]);
      p->left = BuildTree(name, cur + 1, terminal);
      p->right = BuildTree(name, cur + 1, terminal);

      return p;
   }
}

char dfs(Tree *root, string str)
{
   Tree *u;
   u = root;
   int length = str.length();
   for (int i = 0; i < length; i ++)
   {
      if (str[i] == '0')
      {
         u = u->left;
      }
      else
      {
         u = u->right;
      }
   }

   return u->value;
}
int main()
{
    int count = 0;
    while (cin>>n)
    {
       if (n == 0) {break;}
       for (int i = 0; i < n; i ++)
       {
          cin>>name[i];
       }
       string terminal;
       cin>>terminal;
       pos = 0;
       Tree *root = (Tree *)malloc(sizeof(Tree));
       root = BuildTree(name, 0, terminal);
       int k;
       cin>>k;
       for(int i = 0; i < k; i ++)
       {
            string temp;
            cin>>temp;
            ans[i] = dfs(root, temp);
       }
       cout<<"S-Tree #"<<++count<<":"<<endl;
       for (int i = 0; i < k; i ++)
       {
          cout<<ans[i];
       }
       cout<<endl<<endl;
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值