数据仓库分层及部分技术选型

文章介绍了数据仓库的分层结构,包括Stage、ODS、DWD、DWM/DWB、DWS、DIM和DM层,以及它们的功能。在技术选型上,建议使用Sqoop和DataX进行离线数据抽取,FlinkCDC处理实时数据,而对于调度平台,提到了Dolphinscheduler、Azkaban、Oozie和Airflow等选项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 数据仓库分层

stage(可选)

ods

dwd

dim

dwm,dwb(可选)

dws

dm(可选) 应用层

stage(可选)

原始数据文件存储,实时埋点数据存储,放在ods层或ods层之前。

ods层:操作数据数据存储

贴源数据存储,保留历史,用于历史数据备份和问题查找。

dwd:数据仓库明细层

数据仓库明细层,可以对数据进行关联,清洗。一般不做跨业务关联。

dwm,dwb(可选)

数据仓库中间层,数据仓库基础层,叫法和命名很多,一般用于跨业务的轻度汇总,建议划到dws。

dws:数据仓库服务层

数据仓库汇总层。 跨业务关联轻度汇总。指标汇总层。

dim:维度数据层

对维表进行统一标准化定义,实现维表信息共享

dm(可选):数据集市层

数据集市是数据仓库的一个子集,通常面向特定的业务线或者团队

如果是面向具体需求的数据集市,一般会放在应用层。

也有少部分人会把数据集市也当作基础模型,放在dws层。

ads:应用层

不同公司命名所需差异大,模型建设比较随意,面向具体需求,中文名称一般是应用层,

2 数据仓库部门技术选型

2.1 离线数据抽取工具

可以直连对方数据库

申请数据库只读账号及密码,建议使用sqoop,datax,部署简单,用的人多,大数据量同步速度快,其中sqoop更快。 不建议使用kettle,工具比较老,速度较慢。

无法连接对方数据

双方定义规范的接口文档,对方按照接口文档把文件放在指定路径,大数据获取文件并入库,并校验。

不建议使用http接口服务:这种方式没有留痕,数据量大不适合接口传输,出现错误不容易确定责任。

2.2 实时数据抽取工具

Flink CDC

当前最热最火,网上资料多。

StreamSet

单机版免费,集群版本收费。如果不嫌麻烦,可以部署多个单机版本。

2.3 调度平台选取

国内调度平台 dolphinscheduler 国外调度平台 azkaban oozie airflow,kettle 用的人都比较多,开源免费,可以选用。

一般稍微大的公司会自建调度平台或购买付费调度平台。

<think>好的,我现在需要帮助用户了解数据仓库分层架构的设计原则和实现方法,特别是涉及ETL和据建模的部分。首先,我得回顾一下用户提供的引用内容,确保信息准确。 用户提到的引用[1]指出ETL是数据仓库的核心,占60%-80%的工作量,这说明分层架构中ETL的重要性。引用[2]提到集成层的作用是提前ETL,降低下游复杂度,所以设计时需要非必要不设计。引用[4]详细解释了DWD、DWB、DWS各层的定义,这有助于分层结构的理解。引用[3]提到了阿里Dataphin的分层案例,可能需要参考实际应用中的结构。 首先,设计原则方面,应该包括分层解耦、据标准化、逐层加工、可扩展性和性能优化。每个原则需要结合引用内容。例如,分层解耦对应各层隔离,引用4中的DWD作为业务层与库的隔离层。据标准化和ETL处理引用1中ETL的核心作用。 实现方法部分,需要分步骤:分层规划、据建模、ETL设计、技术选型、质量监控。分层规划可以参考引用4的各层定义,比如ODS、DWD、DWB、DWS、ADS。据建模要区分主题域,引用4中的DWS主题域服务据。ETL设计部分需要强调引用1中ETL的抽取、清洗转换步骤,以及引用2中集成层的ETL预处理。 可能的问题需要涵盖设计原则、各层区别、ETL优化、建模方法、分层优势。例如,ETL优化可以提到引用2的集成层减少下游负担。分层优势可以结合引用3的实际案例,比如阿里Dataphin的应用。 要确保回答结构清晰,分点说明,并正确引用来源。同时检查用户提到的格式要求,学公式使用正确,但这个问题可能不太涉及学,所以重点在架构和流程。最后生成相关问题,覆盖用户可能感兴趣的方面,如各层差异、ETL优化方法等。</think>### 数据仓库分层架构的设计原则与实现方法 #### **一、设计原则** 1. **分层解耦** 通过分层实现据处理的逻辑隔离,避免业务逻辑与据存储耦合。例如,$DWD$ 层(细节据层)作为业务系统与数据仓库的隔离层,确保原始据与加工后的据分离[^4]。 2. **据标准化与质量保障** 通过$ETL$(抽取、转换、加载)流程统一据格式、清洗脏据,并建立据血缘关系。引用[1]指出,$ETL$ 是数据仓库的核心,占整体工作量的 60%-80%。 3. **逐层加工与复用性** 采用“分步加工”模式,例如$DWS$(服务据层)基于$DWB$(基础据层)的客观据生成主题域宽表,提升下游查询效率。引用[2]强调集成层需“非必要不设计”,避免冗余。 4. **可扩展性与灵活性** 分层架构需支持动态调整,如通过$ODS$(操作据层)保留原始据,便于回溯和补充加工[^3]。 5. **性能优化** 通过分层降低单层复杂度,例如$DWB$层预计算指标据,减少后续查询的计算量[^4]。 --- #### **二、实现方法** 1. **分层规划** - **$ODS$(操作据层)**:直接存储原始据,与业务系统表结构一致。 - **$DWD$(细节据层)**:清洗、标准化据,关联业务实体(如用户、订单)。 - **$DWB$(基础据层)**:存储客观指标(如销售额、访问量),供上层复用。 - **$DWS$(服务据层)**:按主题域(如用户行为、供应链)聚合据,生成宽表。 - **$ADS$(应用据层)**:面向具体业务需求输出报表或接口据。 2. **据建模方法** - **维度建模**:以事实表(如交易记录)和维度表(如时间、商品)为核心,适用于$DWD$层。 - **范式建模**:在$DWB$层使用规范化模型减少冗余。 - **宽表建模**:在$DWS$层通过多表关联生成宽表,提升查询效率[^4]。 3. **ETL实现步骤** ```python # 示例:简化的ETL流程(据清洗与转换) def etl_process(raw_data): # 1. 抽取 extracted_data = extract_from_source(raw_data) # 2. 转换(标准化、去重) cleaned_data = clean_data(extracted_data) transformed_data = calculate_metrics(cleaned_data) # 3. 加载到目标层 load_to_dwd(transformed_data) ``` 引用[2]提到,集成层可提前执行$ETL$操作,降低下游复杂度。 4. **技术选型** - **ETL工具**:Apache NiFi、Informatica。 - **存储引擎**:HDFS(用于$ODS$)、列式据库(如HBase,用于$DWS$)。 - **计算引擎**:Spark、Flink。 5. **据质量监控** 通过据血缘追踪、空值率统计、一致性校验等手段保障质量,例如: $$ \text{据一致性} = \frac{\text{符合约束的记录}}{\text{总记录}} \times 100\% $$ --- #### **三、典型应用场景** 1. **电商领域** - $DWD$层存储用户行为日志,$DWS$层生成用户画像宽表。 - 引用[4]中$DWS$的宽表设计可支撑实时推荐系统。 2. **金融风控** - 通过$DWB$层预计算交易风险指标,$ADS$层输出风险评分[^3]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值