解读0-1背包问题的状态转移方程

0-1背包问题: 

有N件物品和一个容量为V的背包。第i件物品的费用(体积)是C[i],价值是W[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

显然这个问题的特点是:每种物品只有一件,可以选择放或者不放。

我主要针对动态规划方法,关于这个问题的文章网上已经相当的多,不过我想把自己的思路和一点想法写下来,也算对这个问题的一点体会吧。

依次考虑N件物品,对于容量为v的背包在处理第i件物品时获得的最大价值F,显然有如下递推式:

IF     第i件物品的费用(体积)C[i]>v  

        THEN 第i件物品必然无法加入背包,F[i][v]=F[i-1][v]

ELSE是否加入第i件物品需考虑加入背包后是否划算,在这里可以认为这个第i件物品优先加入背包

        那么有  F[i][v]=max{F[i-1][v],F[i-1][v-C[i]]+W[i]}

现在来解释一下上面这个最关键的状态转移方程!

当前背包容量为v,即将处理第i件物品。显然有如下两种方案,出现了最优子结构性质:

a.若第i件物品加入背包,装入这前i件物品获得的最大价值F[i][v],必然等于第i件物品的价值W[i]加上容量为v-C[i]的背包装入前i-1件物品这个子问题的最大价值F[i-1][v-C[i]] (先把第i件物品加入背包,然后考虑安排剩余的空间容量)

b.若不加入第i件物品,装入这前i件物品的获得的最大价值F[i][v],必然等于容量为v的背包装入前i-1件物品这个子问题获得的最大价值F[i-1][v]

显然,当前问题的最大价值F[i][v]取上面两种方案的较大值!

理解了这个,出代码就简单了。将二维数组F的0行和0列初始化为0然后迭代……

for(i=1;i<=N;i++){
    for(j=1;j<=V;j++){
        if(j>=C[i]){
            temp=F[i-1][j-C[i]]+W[i];
            if(temp>F[i-1][j]) F[i][j]=temp;
            else F[i][j]=F[i-1][j];
        }
        else F[i][j]=F[i-1][j];
    }
}

这个动态规划的时空复杂度都是O(N*V)。

关于这个问题的最终最大价值,很多地方都说应该是F[N][0]...F[N][V]中的最大值而并非F[N][V]。但是我分析了一下迭代过程,做了几组测试后,个人认为最大价值就应该是F[N][V],但是苦于无法进行严密的推证……

若那位朋友有什么想法或见解希望提出来,大家讨论一下,帮我解决这个问题……

空间复杂度优化

由于每次迭代计算F[i][v]时,需要知道的子问题只是F[i-1][v]和F[i-1][v-C[i]],即只需要知道前一次的迭代状态序列F[i-1]。那么可以优化空间只使用一个一维数组F[V]不断迭代,将空间复杂度降到O(V)。

状态转移方程:F[v]=max{F[v],F[v-C[i]]+W[i]}

显然,计算F[v]时前一次的迭代值F[v],F[v-C[i]]已知(存在迭代数组F中)。为了不破坏迭代数组中暂存的上一次迭代值,F[v]的计算应该从后向前逆向进行。

for(i=1;i<=N;i++){
    for(j=V;j>=0;j--){
        if(j>=C[i]&&F[j-C[i]]+W[i]>F[j]) 
            F[j]=F[j-C[i]]+W[i];
    }
}

这里的问题和之前一样,任然是F[0]...F[V]与F[V]的问题……

文章可能存在某些问题,还望大家不吝指正!

也希望大家就之前的极大值的问题,提出自己的观点,谢谢啦……

转载于:https://my.oschina.net/llmm/blog/117421

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值