传知代码-知识图谱推理(论文复现)

0.代码以及视频讲解

本文所涉及所有资源均在传知代码平台可获取

1. 论文概述

本研究专注于基于图神经网络(GNN)的知识图谱推理,特别关注了传播路径的应用与优化。在智能问答和推荐系统等领域,知识图谱推理具有关键作用,但传统GNN方法在效率和准确度方面存在局限。为了改进这些问题,本研究引入了创新的自适应传播策略AdaProp,并与传统的Red-GNN方法进行了对比实验。通过实际运行AdaProp和Red-GNN两种方法,并在多个数据集上进行实验验证,结果显示AdaProp在多项性能指标上取得了显著的提升。这一发现不仅突显了AdaProp在知识图谱推理中的潜力,也为该领域的未来研究和应用提供了新的方向。AdaProp的成功实现在理论和实践层面上都为知识图谱推理开辟了新的可能性,强调了自适应传播策略的重要性。 论文名称:AdaProp: Learning Adaptive Propagation for Graph Neural Network based Knowledge Graph Reasoning 作者:Yongqi Zhang, Zhanke Zhou, Quanming Yao, Xiaowen Chu, and Bo Han 出处:Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '23), August 6–10, 2023, Long Beach, CA, USA 在本论文的基础上添加tensorboard可视化结果 原代码链:https://github.com/LARS-research/AdaProp

2. 论文方法

通过有效的采样技术来动态调整传播路径,既考虑到查询实体和查询关系的依赖性,又避免在传播过程中涉及过多无关实体,从而提高推理效率并减少计算成本。这将涉及到开发新的采样策略,以确保在扩展传播路径时能够保持对目标答案实体的精确预测。为此,提出了一种名为AdaProp的基于GNN的方法,该算法可以根据给定的查询动态调整传播路径。

与传统方法的比较

在知识图谱推理领域,传统的方法如全传播、渐进式传播和受限传播都各自有优势和局限。提出的AdaProp方法在效率和性能上对这些传统方法进行了显著的优化。

3. 实验部分

3.1 实验条件

使用Python环境和PyTorch框架,在单个NVIDIA RTX 3070 GPU上进行,该GPU具有8GB的内存。实验的主要目的是验证AdaProp算法在传导(transductive)和归纳(inductive)设置下的有效性,并分析其各个组成部分在模型性能中的作用。

3.2 数据集

family数据集,存放在./transductive/data文件夹下

3.3 实验步骤

  • step1:安装环境依赖

torch == 1.12.1
torch_scatter == 2.0.9
numpy == 1.21.6
scipy == 1.10.1
  • step2:进入项目目录,进行训练

  • step3:输入tensorboard指令,可视化结果

3.4 实验结果

4. 核心代码

# start
 check all output paths
    checkPath('./results/')
    checkPath(f'./results/{dataset}/')
    checkPath(f'{loader.task_dir}/saveModel/')

    model = BaseModel(opts, loader)
    opts.perf_file = f'results/{dataset}/{model.modelName}_perf.txt'
    print(f'==> perf_file: {opts.perf_file}')

    config_str = '%.4f, %.4f, %.6f,  %d, %d, %d, %d, %.4f,%s\n' % (
    opts.lr, opts.decay_rate, opts.lamb, opts.hidden_dim, opts.attn_dim, opts.n_layer, opts.n_batch, opts.dropout,
    opts.act)
    print(config_str)
    with open(opts.perf_file, 'a+') as f:
        f.write(config_str)

    if args.weight != None:
        model.loadModel(args.weight)
        model._update()
        model.model.updateTopkNums(opts.n_node_topk)

    if opts.train:
        writer = SummaryWriter(log_dir=f'./tensorboard_logs/{dataset}')
        # training mode
        best_v_mrr = 0
        for epoch in range(opts.epoch):
            epoch_loss = model.train_batch()
            if epoch_loss is not None:
                writer.add_scalar('Training Loss', epoch_loss, epoch)
            else:
                print("Warning: Skipping logging of Training Loss due to NoneType.")
            model.train_batch()
            # eval on val/test set
            if (epoch + 1) % args.eval_interval == 0:
                result_dict, out_str = model.evaluate(eval_val=True, eval_test=True)
                v_mrr, t_mrr = result_dict['v_mrr'], result_dict['t_mrr']
                writer.add_scalar('Validation MRR', result_dict['v_mrr'], epoch)
                writer.add_scalar('Validation Hits@1', result_dict['v_h1'], epoch)
                writer.add_scalar('Validation Hits@10', result_dict['v_h10'], epoch)
                writer.add_scalar('Test MRR', result_dict['t_mrr'], epoch)
                writer.add_scalar('Test Hits@1', result_dict['t_h1'], epoch)
                writer.add_scalar('Test Hits@10', result_dict['t_h10'], epoch)
                print(out_str)
                with open(opts.perf_file, 'a+') as f:
                    f.write(out_str)
                if v_mrr > best_v_mrr:
                    best_v_mrr = v_mrr
                    best_str = out_str
                    print(str(epoch) + '\t' + best_str)
                    BestMetricStr = f'ValMRR_{str(v_mrr)[:5]}_TestMRR_{str(t_mrr)[:5]}'
                    model.saveModelToFiles(BestMetricStr, deleteLastFile=False)

        # show the final result
        print(best_str)
        writer.close()
        model.writer.close()

源码下载

  • 24
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值