度度熊与邪恶大魔王
Problem Description
度度熊为了拯救可爱的公主,于是与邪恶大魔王战斗起来。
邪恶大魔王的麾下有n个怪兽,每个怪兽有a[i]的生命值,以及b[i]的防御力。
度度熊一共拥有m种攻击方式,第i种攻击方式,需要消耗k[i]的晶石,造成p[i]点伤害。
当然,如果度度熊使用第i个技能打在第j个怪兽上面的话,会使得第j个怪兽的生命值减少p[i]-b[j],当然如果伤害小于防御,那么攻击就不会奏效。
如果怪兽的生命值降为0或以下,那么怪兽就会被消灭。
当然每个技能都可以使用无限次。
请问度度熊最少携带多少晶石,就可以消灭所有的怪兽。
本题包含若干组测试数据。
第一行两个整数n,m,表示有n个怪兽,m种技能。
接下来n行,每行两个整数,a[i],b[i],分别表示怪兽的生命值和防御力。
再接下来m行,每行两个整数k[i]和p[i],分别表示技能的消耗晶石数目和技能的伤害值。
数据范围:
1<=n<=100000
1<=m<=1000
1<=a[i]<=1000
0<=b[i]<=10
0<=k[i]<=100000
0<=p[i]<=1000
Output
对于每组测试数据,输出最小的晶石消耗数量,如果不能击败所有的怪兽,输出-1
1 2
3 5
7 10
6 8
1 2
3 5
10 7
8 6
Sample Output
6
18
解题思路
利用 dp[血量][防御] 最小钻石量
由题可知其a 、b范围较小,故不会超时
核心代码:
for(int i=0;i<=10;i++)
{
for(int j=0;j<m;j++)
{
ll t =p[j] - i;
if(t<=0)
continue;
for(int kk = 1;kk<=1005;kk++)
{
if(kk<t)
{
dp[kk][i] = min(dp[kk][i],k[j]);
}
else
{
dp[kk][i] = min(dp[kk][i] , dp[kk-(p[j]-i)][i]+k[j]);
}
}
}
}
ll ans = 0 ;
for(int i=0;i<n;i++)
{
ans += dp[a[i]][b[i]];
}