Consistent Optimization for Single-Shot Object Detection - 你的anchor用对了吗?


论文名称:Consistent Optimization for Single-Shot Object Detection

作者:Tao Kong & fuchun Sun & Huaping Liu & Yuning Jiang & Jianbo Shi

论文链接:https://arxiv.org/abs/1901.06563

作者解读:https://zhuanlan.zhihu.com/p/55416312


先上一张图,下图为论文中提供的RetinaNet加入了Consistent Optimization之后的效果,在COCO数据集上,AP平均提高1个百分点,很稳,也说明了本文方法的有效性,下面一起来学习一下这篇文章吧。

简要概述文章精华

本篇论文中,作者提出在one stage目标检测中影响网络精度的一个原因在于优化的目标与inference设置的不一致性(misalignment between the optimization target and inference configurations),解释来说就是,现在流行的目标检测方法,一般会有两个分支,一个分类,一个坐标框回归,而这两个分支往往是独立的,都是对原始anchor进行处理,这就会带来一个问题,我们在进行分类的时候,使用的是原始的anchor,而在坐标框回归后,很可能回归后的anchor与原始anchor已经产生了不同,这样使用原始anchor的分类结果作为回归后的anchor的分类得分就不准确了,本篇论文就是围绕着解决这个问题来进行的。乍一看本篇文章,感觉与Cascade RCNN有点像,采用的方法同样是对网络输出的结果进行refine,来达到提升网络精度的效果,但是其出发点是不同的,Cascade R-CNN的出发点是解决IOU阈值的设置带来的噪声问题,而consistent optimization的出发点是解决分类anchor与回归后的anchor不一致的问题。并且consistent optimization方法只是修改了RetinaNet网络的loss,改动不大,整体上时间消耗也没有增加,原则上说,其也不算是cascade方法,只是思想相近而已,但是本方法的实用性还是很强的。


文章详细解析

首先,为了证明存在上面提到的不一致性的问题,作者进行了实验分析,分析结果如下图Figure 3,可以发现,Input IOU在[0.3,0.5]之间的anchor,经过回归之后,已经变到[0.5,0.85],而在网络训练的时候,IOU在0.4以下是被当做负样本的,显然,强行将anchor的分类得分代表坐标回归后的anchor的得分是有问题的。

另外论文中,作者指出,当两个目标交叉在一起的时候,回归器容易产生疑惑。如下图Figure2所示,红框和黄框对应的类别都是bicycle,但是由于人与自行车交叠在一起,黄框在进行回归的时候,容易误回归到人,但如果它的分类标签还是自行车的话,就可能出现问题,如Figure2(b)所示,结果黄框的score比红框还高,这就容易导致红框在NMS的时候被干掉了,影响了目标检测的精度。

另外作者同时分析了在RetinaNet上面对于不同的IOU的output,输出的平均的score及其方差,以及输出的output IOU的均值及其方差,实验结果如下图Figure 5所示,根据实验结果可以发现output的IOU与output score是呈正相关的,但是图(b)显示,随着Output IOU

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值