Spark版本定制 第1课:通过案例对Spark Streaming透彻理解

一.SparkStreaming在线另类实验
  
如何清晰的看到数据的流入、被处理的过程?使用一个小技巧,通过调节放大BatchInterval的方式,来降低批处理次数,以方便看清楚各个环节。我们从已写过的广告点击的在线黑名单过滤的SparkStreaming应用程序入手。一下是具体的实验源码:

package com.dt.spark.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
  * 背景描述:在广告点击计费系统中,我们在线过滤掉黑名单的点击,进而保护广告商的利益,
  * 只进行有效的广告点击计费。或者在防刷评分(或者流量)系统,过滤掉无效的投票或者评分或者流量。
  * 实现技术:使用transform API直接基于RDD编程,进行join操作
  *
  * Created by Administrator on 2016/4/30.
  */

object OnlineBlackListFilter {
def main(args: Array[String]) {
/**
* 第一步:创建Spark的配置对象,设置Spark程序的运行时的配置信息
* 例如说通过setMaster来设置程序要连接的spark集群的master的url,如果设置为
* local, 则代表Spark程序在本地运行,特别适合于机器配置条件非常差
* (例如只有1g的内存)的初学者
*/

val conf = new SparkConf() //创建SparkConf对象
conf.setAppName("OnlineBlackListFilter") //设置Spark应用程序的名称,在程序运行的监控界面可以看到名称
// conf.setMaster("local") //此时,程序在本地运行,不需要安装Spark集群
conf.setMaster("spark://master:7077") //此时,程序在本地运行,不需要安装Spark集群

val ssc = new StreamingContext(conf, Seconds(300))

/**
* 黑名单数据准备,实际上黑名单一般都是动态的,例如在Redis中或者数据库中,黑名单的生成往往有复杂的业务逻辑,
* 具体情况算法不同,但是在SparkStreaming进行处理的时候每次都能够访问完整的信息
*
*/

val blackList = Array(("hadoop", true), ("mahout", true))
val blackListRDD = ssc.sparkContext.parallelize(blackList, 8)

val adsClickStream = ssc.socketTextStream("master", 9999)

/**
* 此处模拟的广告点击的每条数据的格式为:time、name
* 此处map操作的结果是name, (time, name)的格式
*/

val adsClickStreamFormatted = adsClickStream.map(ads =>(ads.split(" ")(1), ads))
adsClickStreamFormatted.transform(userClickRDD =>{
//通过leftOuterJoin操作既保留了左侧用户广告点击内容的RDD的所有内容,又获得了相应点击内容是否在黑名单中
val joinedBlackListRDD = userClickRDD.leftOuterJoin(blackListRDD)
val validClicked = joinedBlackListRDD.filter(joinedItem => {
/**
*进行filter过滤的时候,其输入元素是一个Tuple:(name,((time, name), boolean))
* 其中第一个元素是黑名单的名称,第二个元素的第二个元素是进行leftOuterJoin的时候是否存在该值
* 如果存在的话,表明当前广告点击是黑名单,需要过滤掉,否则的话则是有效点击内容;
*/
if(joinedItem._2._2.getOrElse(false)){
false
} else {
true
}
})
validClicked.map(validClicked =>{ validClicked._2._1 })
}).print()
/**
* 计算后的有效数据一般都会写入Kafka中,下游的计费系统会从Kafka中pull到有效数据进行计费
*/


ssc.start()
ssc.awaitTermination()
}
}
  • 启动nc -lk 9999,将应用发布到Spark集群上运行,并在nc中发送如下数据:

  • 执行shell代码

    sh内容      
    /usr/local/spark-1.6.1-bin-hadoop2.6/bin/spark-submit –class com.dt.spark.sparkstreaming.OnlineBlackListFilter –master spark://Master:7077 /root/Documents/SparkApps/WordCount.jar

2016-05-01 mahout
2016-05-01 scala
2016-05-01 hadoo
2016-05-01 spark
  • 在应用收到数据后会有如下输出

2016-05-01 scala
2016-05-01 spark

我们运行完程序,看到过滤结果以后,停止程序,打开HistoryServer http://master:18080/

这里写图片描述

点击App ID进去,打开,会看到如下图所示的4个Job,从实际执行的Job是1个Job,但是图中显示有4个Job,从这里可以看出Spark Streaming运行的时候自己会启动一些Job。

这里写图片描述

先看看job id 为0 的详细信息

这里写图片描述

很明显是我们定义的blackListRDD数据的生成。对应的代码为  
val blackList = Array((“Hadoop”, true), (“Mathou”, true))  
//把Array变成RDD  
val blackListRDD = ssc.sparkContext.parallelize(blackList)  
并且它做了reduceBykey的操作(代码中并没有此步操作,SparkStreaming框架自行生成的)。  
这里有两个Stage,Stage 0和Stage 1 。

Job 1的详细信息

这里写图片描述

一个makeRDD,这个RDD是receiver不断的接收数据流中的数据,在时间间隔达到batchInterval后,将所有数据变成一个RDD。并且它的耗时也是最长的,59s 。

特别说明:此处可以看出,receiver也是一个独立的job。由此我们可以得出一个结论:我们在应用程序中,可以启动多个job,并且不用的job之间可以相互配合,这就为我们编写复杂的应用程序打下了基础。  
我们点击上面的start at OnlineBlackListFilter.scala:64查看详细信息

这里写图片描述

根据上图的信息,只有一个Executor在接收数据,最最重要的是红色框中的数据本地性为PROCESS_LOCAL,由此可以知道receiver接收到数据后会保存到内存中,只要内存充足是不会写到磁盘中的。  
即便在创建receiver时,指定的存储默认策略为MEMORY_AND_DISK_SER_2  
def socketTextStream(  
hostname: String,  
port: Int,  
storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2  
): ReceiverInputDStream[String] = withNamedScope(“socket text stream”) {  
socketStream[String](hostname, port, SocketReceiver.bytesToLines, storageLevel)  
}

job 2的详细信息

这里写图片描述
这里写图片描述

Job 2 将前两个job生成的RDD进行leftOuterJoin操作。  
从Stage Id的编号就可以看出,它是依赖于上两个Job的。  
Receiver接收数据时是在spark-master节点上,但是Job 2在处理数据时,数据已经到了spark-worker1上了(因为我的环境只有两个worker,数据并没有分散到所有worker节点,worker节点如果多一点,情况可能不一样,每个节点都会处理数据)  
点击上面的Stage Id 3查看详细信息:  
这里写图片描述
Executor上运行,并且有5个Task 。

Job 3的详细信息

这里写图片描述
这里写图片描述

总结:我们可以看出,一个batchInterval并不是仅仅触发一个Job。

二.Spark Streaming本质的理解

根据上面的描述,我们更细致的了解了DStream和RDD的关系了。DStream就是一个个batchInterval时间内的RDD组成的。只不过DStream带上了时间维度,是一个无边界的集合。

1

Spark Streaming接收Kafka、Flume、HDFS和Kinesis等各种来源的实时输入数据,进行处理后,处理结果保存在HDFS、Databases等各种地方。

2

Spark Streaming接收这些实时输入数据流,会将它们按批次划分,然后交给Spark引擎处理,生成按照批次划分的结果流。

3

Spark Streaming提供了表示连续数据流的、高度抽象的被称为离散流的DStream。DStream本质上表示RDD的序列。任何对DStream的操作都会转变为对底层RDD的操作。

4
Spark Streaming使用数据源产生的数据流创建DStream,也可以在已有的DStream上使用一些操作来创建新的DStream。  
在我们前面的实验中,每300秒会接收一批数据,基于这批数据会生成RDD,进而触发Job,执行处理。

DStream是一个没有边界的集合,没有大小的限制。  
DStream代表了时空的概念。随着时间的推移,里面不断产生RDD。  
锁定到时间片后,就是空间的操作,也就是对本时间片的对应批次的数据的处理。  
下面用实例来讲解数据处理过程。  
从Spark Streaming程序转换为Spark执行的作业的过程中,使用了DStreamGraph。  
Spark Streaming程序中一般会有若干个对DStream的操作。DStreamGraph就是由这些操作的依赖关系构成。

对DStream的操作会构建成DStream Graph

这里写图片描述

从每个foreach开始,都会进行回溯。从后往前回溯这些操作之间的依赖关系,也就形成了DStreamGraph。

在每到batchInterval时间间隔后,Job被触发,DStream Graph将会被转换成RDD Graph

这里写图片描述

空间维度确定之后,随着时间不断推进,会不断实例化RDD Graph,然后触发Job去执行处理。

转载于:https://my.oschina.net/mhf/blog/671438

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值