【快速傅立叶变换fft&数论变换ntt学习小记】

概述

fft(快速傅立叶变换)是用来解决多项式乘法的nlog(n)算法,它的主要思想是先把多项式的多项式表达法转化成若干个二维点对(x,y)(点值),把相同x的y乘起来(计算),最后利用这些点对计算出多项式的多项式表达法的系数(插值)。这中间使用了n次单位复数根的一些特殊性质,采用分治的思想快速地完成点值和插值。

n次单位复数根

要想理解fft,首先要知道n次单位复数根有哪些神奇的性质。

定义

n次单位复数根是满足 wn=1 的复数w。
wkn=e2πik/n ,其中 wkn 是n个n次单位复数根中的第k个,i是虚数单位, i=1
eiu=cos(u)+isin(u) ,其中三角函数是弧度制。

这里写图片描述

*以下内容是我自己脑补的
我们可以感性地认为w由两部分构成,复数的实数部和虚数部,分别设为x,y。w就是复(数)平面上的点(x,y),u代表的就是和x正轴夹角的弧度,通过sin,cos就可以求出坐标,表示出复数w。

性质

性质1
w1n 是w的主n此单位根,由 wkn=e2πik/n 可以的得出 win=wi1nw1n ,整个定义都是指数形式的,是等比数列。
性质0
还记得刚刚那个图吗,由图可以感性得出 wnn=w0n=1 ,为什么等于1,cos(0)=1。
性质2(群的性质)
wkn=wk%nnwnk/nn ,其中%是取模的意思。
=wk%nn(wnn)k/n
=wk%nn1k/n (性质0)
=wk%nn
性质3(消去引理)
wdkdn=wkn ,由 wkn=e2πik/n 可以得出,不就是上下约分吗。
性质4(折半引理)
(wk+n/2n)2=(wkn)2(wn/2n)2
=(wkn)2(wnn)2
=(wkn)212 (性质0)
=(wkn)2
还记得刚刚那个图吗,这两个复数对应的点关于原点对称,其实相当于相反数关系。
性质5(求和引理)
n1j=0(wkn)j=((wkn)n1)/(wkn1) ,等比数列求和
=((wnn)k1)/(wkn1)
=(1k1)/(wkn1) (性质0)
=0 ,当k!=0和k!=n时

点值

我们要求 y(wn)=a0(wn)0+a1(wn)1an(wn)n
y0(wn)=a0(wn)0+a2(wn)2
y1(wn)=a1(wn)1+a3(wn)3
y(wn)=y0((wn)2)+wy1((wn)2)
=y0(wn/2)+wy1(wn/2) (性质3)
也就是说我们要求 wn 对应的n个点值,可以把系数分组后由 wn/2 对应的n/2个点值求出。
首先我们考虑怎么分组,我们把模2为0的放左边,把模2为1的放右边,相当于0,1分组,按低位分组,倒着按高位编号,可以用下面的图理解一下。

这里写图片描述

分解到剩一个时y值就是a。考虑合并答案,从小到大枚举块的大小,由性质4可以把当前块分成左右两部分,只用考虑一部分,两部分对应的两个u’,v’转移是相似的,因为他们的值是相反数,平方之后就没有影响,只是外面的系数w成相反数,所以可以同时处理。 y(u)=y(u)+wy(v),y(v)=y(u)wy(v)

这里写图片描述

所以整个点值的流程是,把每个位置的数按标号二进制反过来重新放置,从小到大枚举块的大小,每个块找出对应的两个位置,位置相差块的一半,然后转移一下就可以了。

这里写图片描述

插值

我们可以由定义得出将a矩阵变成y矩阵的矩阵v的第j行第k列是 wkjn ,就是在多项式里自变量为 wkn 。这里我们有一个结论,将y矩阵变成x矩阵的矩阵 v1 的第j行第k列是 wkjn/n

这里写图片描述

首先 avv1=a ,那么 vv1 是一个值都为1的矩阵。
[vv1]j,j=n1k=0wjknwkjn/n
=n1k=0wk(jj)n/n
=n1k=0(wjjn)k/n
=0 (性质5),当 j!=j
j=j 时,显然
n1k=0(wjjn)k/n=n1k=0w0n/n
=n1k=01/n
=n/n
=1
有了这个结论后,我们只需要在插值的时候将 wkn 变成 wkn 就可以直接套用点值时的做法,点值时的性质显然现在还符合。

这就结束了?

使用模运算的fft(原来这叫ntt)(有原根才能用)

由于我们使用了浮点数,当数据变大时我们的误差就变得不可接受,所以我们考虑化浮点数为整数。
我们用 gk%p 代替 w1n ,其中p是质数,p=kn+1。g是原根。
首先要 (gk)n%p=(w1n)n=1
由于费马小定理 ap1=1(%p)
(gk)n%p=gkn%p=gp1%p=1
有了 w1n 我们就可以求出所有w(性质1)。
由于复数和普通的数本质上没有什么不同,所以之前的性质照样适用。
在这里提供一对比较好的g,p。g=3,p=1004535809。这里有一个问题,这样求出来的k可能不是整数(又产生了误差),可是我们发现n是2的指数次幂,而p-1的质因子有很多个2,多到n足够大都不会除不尽(在可接受复杂度内的n)。

贴上高精度乘法的代码

code(without mod)

#include<cmath>
#include<cstdio>
#include<algorithm>
#define LD double
#define LL long long
#define min(a,b) ((a<b)?a:b)
#define max(a,b) ((a>b)?a:b)
#define fo(i,j,k) for(int i=j;i<=k;i++)
#define fd(i,j,k) for(int i=j;i>=k;i--)
using namespace std;
int const maxn=1e5;
int n,m,A,B;LL c[maxn*4+10];
LD pi=acos(-1);
struct rec{
    LD x,y;
    rec(LD X=0,LD Y=0){x=X;y=Y;}
};
rec operator+(rec x,rec y){return rec(x.x+y.x,x.y+y.y);}
rec operator-(rec x,rec y){return rec(x.x-y.x,x.y-y.y);}
rec operator*(rec x,rec y){return rec(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);}
rec a[maxn*4+10],b[maxn*4+10],t[maxn*4+10];
void read(int &num,rec *a){
    num=0;int v=0;char ch=getchar();
    for(;(ch<'0')||(ch>'9');ch=getchar());
    for(;(ch>='0')&&(ch<='9');a[num++]=ch-'0',ch=getchar());
    int mx=num/2-1;fo(i,0,mx){rec tmp=a[i];a[i]=a[num-i-1];a[num-i-1]=tmp;}
}
int up(LD x){return int(x)+((int(x)==x)?0:1);}
void DFT(rec *a,LD tag){
    fo(i,0,n-1){
        int pos=0;
        for(int j=0,ii=i;j<m;pos=(pos<<1)+(ii&1),ii=ii>>1,j++);
        t[pos]=a[i];
    }
    for(int i=2;i<=n;i=i<<1){
        int half=i>>1;
        fo(j,0,half-1){
            rec w(cos(tag*pi*j/half),sin(tag*pi*j/half));
            for(int k=j;k<n;k+=i){
                rec x=t[k],y=w*t[k+half];
                t[k]=x+y;
                t[k+half]=x-y;
            }
        }
    }
    fo(i,0,n-1)a[i]=t[i];
}
int main(){
    freopen("d.in","r",stdin);
    freopen("d.out","w",stdout);
    read(A,a);read(B,b);
    m=up(log(max(A,B)<<1)/log(2));n=1<<m;
    DFT(a,1);DFT(b,1);
    fo(i,0,n-1)a[i]=a[i]*b[i];
    DFT(a,-1);
    fo(i,0,n-1)c[i]=(a[i].x+1e-6)/n;
    fo(i,0,n-1){
        c[i+1]+=c[i]/10;
        c[i]%=10;
    }
    for(;c[n]==0;n--);
    fd(i,n,0)putchar(c[i]+'0');
    return 0;
}

code(with mod)

#include<cmath>
#include<cstdio>
#include<algorithm>
#define LD double
#define LL long long
#define min(a,b) ((a<b)?a:b)
#define max(a,b) ((a>b)?a:b)
#define fo(i,j,k) for(int i=j;i<=k;i++)
#define fd(i,j,k) for(int i=j;i>=k;i--)
using namespace std;
int const maxn=1e5,g=3,mo=1004535809;
int n,m,A,B,w[maxn*4+10],a[maxn*4+10],b[maxn*4+10],t[maxn*4+10];
void read(int &num,int *a){
    num=0;int v=0;char ch=getchar();
    for(;(ch<'0')||(ch>'9');ch=getchar());
    for(;(ch>='0')&&(ch<='9');a[num++]=ch-'0',ch=getchar());
    int mx=num/2-1;fo(i,0,mx)swap(a[i],a[num-i-1]);
}
int up(LD x){return int(x)+((int(x)==x)?0:1);}
void DFT(int *a,int tag){
    fo(i,0,n-1){
        int pos=0;
        for(int j=0,ii=i;j<m;pos=(pos<<1)+(ii&1),ii=ii>>1,j++);
        t[pos]=a[i];
    }
    for(int i=2;i<=n;i=i<<1){
        int half=i>>1;
        fo(j,0,half-1){
            int wi=(tag>0)?w[n/i*j]:w[n-n/i*j];
            for(int k=j;k<n;k+=i){
                int x=t[k],y=1ll*wi*t[k+half]%mo;
                t[k]=(x+y)%mo;
                t[k+half]=(x-y+mo)%mo;
            }
        }
    }
    fo(i,0,n-1)a[i]=t[i];
}
int Pow(int x,int y){
    int z=1;
    while(y){
        if(y&1)z=1ll*z*x%mo;
        x=1ll*x*x%mo;
        y=y>>1;
    }
    return z;
}
int main(){
    freopen("d.in","r",stdin);
    freopen("d.out","w",stdout);
    read(A,a);read(B,b);
    m=up(log(max(A,B)<<1)/log(2));n=1<<m;
    w[0]=1;w[1]=Pow(g,(mo-1)/n);
    fo(i,2,n)w[i]=1ll*w[i-1]*w[1]%mo;
    DFT(a,1);DFT(b,1);
    fo(i,0,n-1)a[i]=1ll*a[i]*b[i]%mo;
    DFT(a,-1);
    int ni=Pow(n,mo-2);
    fo(i,0,n-1)a[i]=1ll*a[i]*ni%mo;
    fo(i,0,n-1){
        a[i+1]+=a[i]/10;
        a[i]%=10;
    }
    for(;a[n]==0;n--);
    fd(i,n,0)putchar(a[i]+'0');
    return 0;
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值