import openai
import os
import json
import requests
from openai import OpenAI
client = OpenAI(
api_key = os.getenv("OPENAI_API_KEY"),
)
def get_weather(city, date):
base_url = "https://restapi.amap.com/v3/weather/weatherInfo"
api_key = os.getenv("AMAP_API_KEY") # 高德API的API-KEY从环境变量获取
params = {
'key': api_key,
'city': city,
'extensions': 'base', # 可根据需求选择 'base' 或 'all'
'output': 'json',
'date': date # 指定日期,格式如:2023-01-01
}
try:
response = requests.get(base_url, params=params)
data = response.json()
# print(data)
if data['status'] == '1':
weather_info = data['lives'][0] # 如果选择了 'base' 扩展,使用 'lives';选择 'all' 扩展,使用 'forecasts'
# print(f"城市: {weather_info['city']}")
# print(f"日期: {date}")
# print(f"天气: {weather_info['weather']}")
# print(f"温度: {weather_info['temperature']} ℃")
# print(f"风力: {weather_info['windpower']} 级")
rlt = json.dumps(weather_info)
print(rlt)
return rlt
else:
print("查询天气信息失败,错误码:" + data['infocode'])
except Exception as e:
print("查询天气信息时发生错误:" + str(e))
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "查询指定城市,指定日期的天气情况",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "要查询的城市名称,如:北京",
},
# "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
"date": {
"type": "string",
"description": "要查询的日期,示例:2023-11-23",
}
},
"required": ["city", "date"],
},
},
}
]
## 我们需要将用户的输入一并传递给OpenAI,以便从中提取函数调用所需要的参数。
messages = [
{
"role": "user",
"content": "北京12月27号天气怎么样"
}
]
### 第一次调用 Chat Completions API, 提取参数
response = client.chat.completions.create(
model="gpt-3.5-turbo-1106",
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
response_message = response.choices[0].message
tool_calls = response_message.tool_calls # 包含了函数调用所需要的信息
if tool_calls:
tool_call = tool_calls[0]
# 大模型根据问题,传入的函数说明,拆分出调用函数的需要的两个参数
function_args = json.loads(tool_call.function.arguments)
# 将大模型传出的两个参数给到自己的函数,获取返回值
function_response = get_weather(
city=function_args.get("city"),
date=function_args.get("date"),
)
# 打印返回值
function_response
function_name = tool_call.function.name
messages.append(
{
"tool_call_id": tool_call.id,
"role": "assistant",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
#再次调用模型,将message对象给大模型
second_response = client.chat.completions.create(
model="gpt-3.5-turbo-1106",
messages=messages,
) # get a new response from the model where it can see the function response
# 打印返回值 function_response {"province": "\u5317\u4eac", "city": "\u5317\u4eac\u5e02", "adcode": "110000", "weather": "\u6674", "temperature": "2", "winddirection": "\u5357", "windpower": "\u22643", "humidity": "43", "reporttime": "2023-12-27 15:09:13", "temperature_float": "2.0", "humidity_float": "43.0"}
second_response
ChatCompletion(id='chatcmpl-8adUanEwuGsYBi5XNGb6kasUJEIjm', choices=[Choice(finish_reason='stop', index=0, message=ChatCompletionMessage(content='北京12月27号的天气是晴天,气温大约4摄氏度,西南风,风力小于3级,湿度44%。', role='assistant', function_call=None, tool_calls=None), logprobs=None)], created=1703742308, model='gpt-3.5-turbo-1106', object='chat.completion', system_fingerprint='fp_772e8125bb', usage=CompletionUsage(completion_tokens=46, prompt_tokens=138, total_tokens=184))
os.getenv("OPENAI_API_KEY"), # OPENAI的API-KEY设置到自己电脑的环境变量中,通过这行代码获取
os.getenv("AMAP_API_KEY") # 高德API的API-KEY设置到自己电脑的环境变量中,通过这行代码获取