ChatGLM3从huggingface和github.com下载有啥区别

本文介绍了HuggingFace上预训练的ChatGLM3模型,提供直接使用的便利,与GitHub上的项目代码仓库对比,后者包含模型源代码供深入理解和定制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://huggingface.co/THUDM/chatglm3-6b

https://github.com/THUDM/ChatGLM3

以上这两个地址下载的ChatGLM3有啥区别


以上两个地址分别指向同一个项目的不同方面:

  1. https://huggingface.co/THUDM/chatglm3-6b: 这是Hugging Face模型仓库中的一个地址,它提供了预训练的ChatGLM3模型。ChatGLM3是由清华大学自然语言处理团队(THUDM)开发的一个大型预训练语言模型。Hugging Face是一个专注于构建机器学习模型的平台,它为用户提供了一个存储库,可以轻松地下载和使用这些模型。

  2. GitHub - THUDM/ChatGLM3: ChatGLM3 series: Open Bilingual Chat LLMs | 开源双语对话语言模型: 这是该项目在GitHub上的代码仓库。在这里,用户可以找到ChatGLM3模型的源代码,以及如何部署和使用的说明文档。GitHub是一个软件开发平台,允许开发者托管代码仓库、追踪变更、协作开发等。

总结来说,如果你想使用ChatGLM3模型,可以从Hugging Face仓库下载预训练的模型。如果你对模型的实现细节感兴趣,或者想要修改和部署自己的版本,那么应该访问GitHub上的代码仓库。


这两个地址都与ChatGLM3模型有关,但它们的功能和用途略有不同:

  1. https://huggingface.co/THUDM/chatglm3-6b: 这是Hugging Face模型仓库中提供的预训练ChatGLM3模型的地址。Hugging Face为用户提供了一个存储库,可以轻松地下载和使用这些模型。这意味着用户可以直接从这个地址下载预训练好的模型,并在自己的应用中使用它,而不需要自己从头开始训练模型。

  2. https://github.com/THUDM/ChatGLM3: 这是ChatGLM3项目的官方GitHub代码仓库。在这里,用户可以找到模型的源代码,了解其内部工作原理,并且可以根据需要自定义或扩展模型。对于那些希望深入了解模型并进行定制化开发的用户来说,这个仓库是很有用的。

结论:如果你想直接使用ChatGLM3模型而无需进行任何开发或定制工作,你应该访问Hugging Face的地址来下载预训练好的模型。如果你不仅想使用模型,还希望了解它的内部机制或者对其进行修改和定制,那么你应该访问GitHub上的代码仓库。


从Hugging Face下载的模型是预训练好的,可以直接用于推理或微调。它通常包括模型的权重,即模型在大量文本数据上预先训练好的参数。当你从Hugging Face下载模型后,你可以直接使用它来进行各种任务,比如文本生成、情感分析、问题回答等,而不需要自己进行训练。

从GitHub上下载的模型则是指模型的源代码。虽然源代码中包含了模型的设计和实现,但它并不是可以直接运行的模型。通过GitHub上的代码仓库,你可以了解到模型是如何构建和训练的,也可以获取到模型微调和部署所需的代码。然而,要使这些代码能够运行起来并进行实际的任务,你需要设置好相应的运行环境,安装必要的依赖,并且可能还需要额外的数据集来进行训练或微调。

因此,如果你想要一个可以直接运行并进行对话的模型,你应该选择从Hugging Face下载预训练模型。如果你想要理解模型的内部工作机制,并有可能对其进行修改或定制,你应该选择从GitHub上获取源代码。


举个通俗易懂的例子:

假设你想学习烹饪,并制作出美味的菜肴。在这个例子中,预训练的ChatGLM3模型就像是一个已经学会了很多烹饪技巧和食谱的“大厨”。你从Hugging Face下载这位“大厨”,就像是雇佣了一位已经具备丰富经验的厨师,你可以直接命令这位厨师为你制作菜肴,而不需要从头教他如何烹饪。这位“大厨”已经通过大量的烹饪经验(预训练)掌握了如何处理各种食材和调配味道的能力,所以你可以直接享用美食。

另一方面,从GitHub上下载ChatGLM3模型源代码就像是得到了一份详细的烹饪指南(食谱)。这份指南告诉你如何从基本的原料开始,逐步加工成美味的菜肴。但是,就像拿到食谱并不意味着你立刻就能做出美食一样,拿到源代码并不意味着你立即就能进行对话。你需要先学习这些烹饪技巧(理解源代码),然后在自己的厨房

<think>好的,我需要帮用户解决如何通过镜像网站下载Hugging Face的le robot Git仓库的问题。首先,用户提到他们想使用镜像网站来下载,这可能是因为直接访问Hugging Face的主站速度较慢或者有地域限制。 首先,我得回忆一下Git镜像仓库的基本操作。通常,镜像仓库可以通过添加镜像URL作为远程仓库,然后进行克隆或者拉取。用户提供的示例引用了两个步骤,一个是克隆仓库,另一个是启动机器人的命令。用户可能已经尝试过直接克隆,但想通过镜像加速。 接下来,我需要确认Hugging Face是否有官方的镜像网站。据我所知,Hugging Face本身可能没有官方镜像,但有一些社区维护的镜像,比如使用HF Mirror(https://hf-mirror.com)。这个镜像常用于模型数据集的下载,但不确定是否支持Git仓库的镜像。 如果镜像网站支持Git仓库,那么克隆命令可能需要替换URL中的域名部分。例如,原命令是`git clone https://github.com/huggingface/lerobot.git`,如果使用镜像,可能需要改为镜像的URL,比如`git clone https://hf-mirror.com/huggingface/lerobot.git`。但需要验证这个URL是否存在。 另外,Git本身支持通过`git clone`命令添加镜像参数,比如`--mirror`,但这通常用于创建本地镜像仓库,而不是从远程镜像下载。所以可能需要先添加镜像作为远程仓库,再从中拉取。 另一个方法是使用Git的配置来替换URL。例如,使用`git config`设置URL重写规则,将原始URL自动替换为镜像URL。例如: ``` git config --global url."https://hf-mirror.com/".insteadOf "https://huggingface.co/" ``` 这样,当用户克隆`https://huggingface.co/huggingface/lerobot`时,Git会自动使用镜像地址。但需要确认镜像网站是否实际存在对应的仓库路径。 还需要检查le robot仓库的正确路径。用户提供的示例中克隆的是GitHub上的仓库(github.com/huggingface/lerobot),而Hugging Face的主站是huggingface.co,所以可能存在混淆。如果le robot仓库实际上托管在GitHub上,那么镜像可能需要针对GitHub的镜像,比如使用https://github.com.cnpmjs.org/ 或者https://hub.fastgit.org/ 这样的镜像站点。 但用户的问题特别提到Hugging Face的仓库,所以可能需要区分GitHubHugging Face的不同镜像。例如,如果仓库在Hugging Face的Git托管服务上(类似于huggingface.co/username/repo),那么可能需要使用对应的镜像地址。例如,将huggingface.co替换为hf-mirror.com。 总结可能的步骤: 1. 确定le robot仓库的实际位置:是在GitHub还是Hugging Face的Git托管上。 2. 根据仓库位置选择合适的镜像站点。 3. 修改克隆命令中的URL,替换为镜像地址。 4. 或者配置Git全局替换,自动重定向到镜像。 例如,如果原命令是克隆GitHub的仓库,使用GitHub镜像: ``` git clone https://hub.fastgit.org/huggingface/lerobot.git ``` 或者如果使用Hugging Face的镜像: ``` git clone https://hf-mirror.com/huggingface/lerobot ``` 但需要确认这些镜像是否存在该仓库。 另外,用户提供的引用中提到了克隆仓库的命令是`git clone https://github.com/huggingface/lerobot.git`,所以仓库确实在GitHub上。因此,可能需要使用GitHub的镜像站点。 GitHub的常见镜像包括: - https://github.com.cnpmjs.org/ - https://hub.fastgit.org/ - https://gitclone.com/ 因此,用户可以将原命令中的github.com替换为镜像域名,例如: ``` git clone https://hub.fastgit.org/huggingface/lerobot.git ``` 或者使用gitclone.com的加速服务: ``` git clone https://gitclone.com/github.com/huggingface/lerobot.git ``` 此外,还可以通过配置Git的全局代理或者使用加速插件来提升下载速度,但用户明确要求使用镜像网站,所以优先考虑替换URL的方法。 在回答时,需要分步骤说明如何替换URL,或者配置Git的全局替换,并提供示例命令。同时提醒用户如果某个镜像不可用,可以尝试其他镜像站点。 最后,确保用户后续步骤,如进入目录运行脚本,与原命令一致,无需更改。</think>要使用镜像网站下载Hugging Face的`lerobot`仓库,可以通过替换域名或配置Git重定向实现。以下是具体步骤: --- ### **方法一:直接替换URL中的域名** 1. **确定原始仓库地址** 原始命令为: ```bash git clone https://github.com/huggingface/lerobot.git ``` 此仓库托管在GitHub上,因此需要使用GitHub的镜像站点。 2. **选择镜像站点** 常用GitHub镜像域名包括: - `hub.fastgit.org` - `github.com.cnpmjs.org` - `gitclone.com` 3. **修改克隆命令** 将`github.com`替换为镜像域名,例如: ```bash git clone https://hub.fastgit.org/huggingface/lerobot.git ``` 或使用`gitclone.com`加速服务: ```bash git clone https://gitclone.com/github.com/huggingface/lerobot.git ``` --- ### **方法二:配置Git全局重定向** 1. **设置URL替换规则** 通过Git配置,自动将`github.com`替换为镜像域名: ```bash git config --global url."https://hub.fastgit.org/".insteadOf "https://github.com/" ``` 此后,所有`https://github.com/...`的请求会自动重定向到镜像站点。 2. **执行原始克隆命令** ```bash git clone https://github.com/huggingface/lerobot.git ``` Git会实际从镜像地址下载。 --- ### **后续操作** 克隆完成后,进入仓库目录并启动机器人(根据引用[2]): ```bash cd lerobot conda activate lerobot python lerobot/scripts/control_robot.py \ --robot.type=lekiwi \ --control.type=remote_robot ``` --- ### **注意事项** 1. 如果某个镜像不可用,尝试更换其他镜像域名。 2. 镜像站点可能存在同步延迟,若克隆失败可稍后重试。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值