最近,IBM Research和纽约大学合作检测青光眼。使用深度学习技术,3D原始视网膜断层扫描图像被用于检测青光眼的特征模式,并且该模型被进一步训练以评估视野指针(VFI)。价值,VFI是表示整个视野的通用标准。在实验过程中,模型错误率仅为2%。
文章转自:SBF胜博发平台
IBM指出,青光眼是世界上导致失明的第二大原因,影响了40岁以上人口的3.5%。 2010年,有6050万人患有青光眼。预计到2020年,受该疾病影响的人口将受到影响。它将增加到8000万人。青光眼被称为视力窃贼,因为青光眼病程缓慢且大部分都没有症状。当他们没有发现任何异常时,40%的人失去了视力。有些治疗方法只能减缓病程,防止视力下降。因此,早期发现和及时治疗非常重要。
视野测试可以可视化患者可见的视觉空间,并用于诊断多种眼睛状况。例如,由青光眼引起的视神经损伤可导致上视野和下视野中的特征性视野缺陷。这是诊断的一部分。然而,因为这些测试完全取决于患者的反馈,并且患者对警觉性是主观的,特别是时间被认为是影响患者测试表现的主要因素。通常,早上的表现将优于测试结束。午餐后,患者可能需要多次测试以确保测量到正确的视力损害。
从生物学的角度来看,视觉功能与视网膜结构有关,但有趣的问题是,我们能否通过使用眼睛结构的非侵入性技术直接评估视觉功能? IBM指出,如果您可以在视网膜成像数据中找到信息以帮助评估青光眼的状态,答案是肯定的,因此IBM研究和纽约大学合作研究该问题并通过AI分析视网膜光学层析成像。图像方法可以比传统方法更系统地找出图像中包含的信息,并在专家诊断时提供帮助。