算法总结

算法总计

聚类

定义:对应给定集合D,其中每个元素有n个可观察属性,使用某种算法将其分为k个子集,其中每个子集内部元素之间相似度尽可能高,不同子集内部元素相异度尽可能高的过程叫做聚类,每个子集叫做一个族

聚类的算法包括

k-means

分类和回归

定义:对于给定集合D,其中每个元素有n个可观察属性,根据给出的实例将其分为k个子集,其中每个子集内部元素之间相似度尽可能高,不同子集内部元素相异度尽可能高

分类和回归是监督式学习的两种主要形式, 监督式学习是指 算法尝试使用已有标签的训练结果根据对象的特点进行预测结果,分类和回归的区别在于 分类的变了是离散的 ,比如 男或女,攒或者不攒, 好评差评,垃圾邮件非垃圾邮件,而回归的的变量是连续的比如根据年龄和身高来预测体重,根据前几次的电影类型来预测改用户的电影喜好

分类和回归的算法包括

线性回归

逻辑回归

支持向量机

朴素贝叶斯

决策树与随机森林

利用spark mlib库 实现聚类 参考

https://blog.csdn.net/qq_34531825/article/details/52663428

 

转载于:https://my.oschina.net/u/2969788/blog/2875418

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值