算法总计
聚类
定义:对应给定集合D,其中每个元素有n个可观察属性,使用某种算法将其分为k个子集,其中每个子集内部元素之间相似度尽可能高,不同子集内部元素相异度尽可能高的过程叫做聚类,每个子集叫做一个族
聚类的算法包括
k-means
分类和回归
定义:对于给定集合D,其中每个元素有n个可观察属性,根据给出的实例将其分为k个子集,其中每个子集内部元素之间相似度尽可能高,不同子集内部元素相异度尽可能高
分类和回归是监督式学习的两种主要形式, 监督式学习是指 算法尝试使用已有标签的训练结果根据对象的特点进行预测结果,分类和回归的区别在于 分类的变了是离散的 ,比如 男或女,攒或者不攒, 好评差评,垃圾邮件非垃圾邮件,而回归的的变量是连续的比如根据年龄和身高来预测体重,根据前几次的电影类型来预测改用户的电影喜好
分类和回归的算法包括
线性回归
逻辑回归
支持向量机
朴素贝叶斯
决策树与随机森林
利用spark mlib库 实现聚类 参考
https://blog.csdn.net/qq_34531825/article/details/52663428