自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 资源 (4)
  • 收藏
  • 关注

原创 Ruby(一)

Ruby 是一种开源的面向对象程序设计的服务器端脚本语言,可运行于多种平台,如 Windows、MAC OS 和 UNIX 的各种版本。Ruby流行起来的根本原因是因为基于Ruby的Web开发框架Rails的广泛使。

2023-07-31 17:25:07 198 1

原创 IC验证概述

验证学习

2022-06-18 18:41:56 3511

原创 Simulink 学习(三)

学习笔记。文中有注释原文链接

2022-06-17 16:24:11 5061

原创 simulink 学习(二)

学习笔记,学习资料的搬运者

2022-06-16 20:43:36 4845

原创 Simulink 学习(一)

matlab中的simulink仿真学习,是学习笔记,不是经验分享,仅是个人整理学习大佬们的学习资料。

2022-06-16 09:49:17 9156

原创 多目标进化算法总结

一、算法综述多目标就以下三个方面为目标,各种算法使用了和单目标算法的不同组合从而进行有效实现。包括:一组数量尽可能大的非劣解(非劣解集和);要求这组解逼近问题的全局Pareto最优前端(避免局部最优);尽可能均匀地分布在整个全局最优前端上(实现解的分布均匀性和多样性)。二、算法之间的比较1、SPEA:主要步骤:1、产生初始种群P和空的外部非劣解集和NP;2、将种群中的非劣解个体拷贝到空的外部非劣解集NP;3、进行迭代时,剔除NP中受种群P支配的解;4、剔除多余解(聚类分析:取

2022-05-30 20:48:38 3717

原创 repmat函数的使用(matlab)

B = repmat(A, m, n)%将矩阵A复制m*n块,即将矩阵A复制成m行,n列eg:A= [1,2,3] B = repmat(A,2,3)B = [1 2 31 2 31 2 3 1 2 31 2 31 2 3]

2021-10-21 15:06:03 398

原创 ismember函数的使用 (matlab)

本人能力有限,此学习笔记仅为个人见解,如有错误,欢迎批评指正!Lia = ismember(A,B)这个函数主要是看矩阵A中的数据是不是矩阵B中的成员,是的话返回一个包含逻辑1(ture)的数组,不是返回0;如果A和B是表或时间表,则ismember将为每一行返回一个逻辑值。对于时间表,ismember考虑行时间以确定相等。输出Lia是一个列向量 。举例子:***************************************************************...

2021-08-20 11:43:52 11686

原创 遗传算法(GA)的一些学习感悟

1、算法的早熟收敛:一般称之为“早熟”,是遗传算法中的一种现象。指在遗传算法早期,在种群中出现了超级个体,该个体的适应值大大超过当前种群的平均个体适应值。从而使得该个体很快在种群中占有绝对的比例,种群的多样性迅速降低,群体进化能力基本丧失,从而使得算法较早收敛于局部最优解的现象。早熟收敛的本质特征是指群体中的各个个体非常相似,群体的多样性急剧减少,当前群体缺乏有效等位基因(最优解位串上的等位基因),在遗传算子作用下不能生成高阶竞争模式。2、容易陷入局部最优的缺点:像所有的算法一样,遗传算法很容易

2021-08-20 11:27:18 6462 2

原创 遗传算法(GA)概述

注释:是学习之余整理的资料,如有不足的地方还请指教,十分感谢!目录1、遗传算法的基本思想2、遗传算法的步骤(1)初始种群的产生(编码)(2)适应度函数的确定(3)遗传算子(选择、交叉、变异)3、遗传算法的适应性4、遗传算法的优缺点(1)遗传算法的优点:(2)遗传算法的缺点:5、算法流程图遗传算法概述遗传 算法(Genetic Algorithm)是一种进化算法,原理是仿效生物界的“物竞天择,适者生存”的演化法则。最早由美国Michigan大学的J.Ho..

2021-08-11 10:23:45 5465

原创 SPEA2算法原理及应用方向

SPEA2算法原理及应用方向

2021-08-10 16:19:48 9948 1

原创 MOEA/D算法原理及应用方向

注释:是学习之余整理的资料,如有不足的地方还请指教,十分感谢!目录1、MOEA/D算法的简介1.1 MOEA/D产生的背景1.2MOEA/D的产生2、MOEA/D算法的原理与流程2.1 MOEA/D算法的基本原理2.2 MOEA/D算法的分解策略2.3 MOEA/D算法的流程3、MOEA/D算法的特征3.1 MOEA/D算法的特点4、研究现状与应用方向4.1 研究现状4.2 应用领域1、MOEA/D算法的简介1.1 MOEA/D产生的背景..

2021-08-09 16:38:07 10694 1

原创 NSGA-Ⅲ算法的基本原理

注释:是学习之余整理的资料,如有不足的地方还请指教,十分感谢!目录一、 算法简介二、 基本步骤三、 算法核心3.1参考点设置​3.2、种群的自适应标准化(寻找理想点-计算极值点,构建超平面—找到截距,目标归一化)3.2.1寻找理想点:即求解这一代种群所有目标的最小值3.2.2计算极值点3.2.3 构建超平面,找截距,目标归一化3.3、关联操作(让群体中的个体分别关联到相应的参考点)3.4、个体保留操作(选择进入到下一代的个体)四、总结一、 算法简介...

2021-08-09 10:46:39 11426

原创 NSGA-Ⅱ算法原理

注释:是学习之余整理的资料,如有不足的地方还请指教,十分感谢!目录1、多目标进化算法1.1 MOEA概述1.2 MOEA的分类2、NSGA-Ⅱ算法介绍2.1 NSGA算法2.2 NSGA-Ⅱ算法3、NSGA-Ⅱ算法的步骤3.1 NSGA-Ⅱ算法流程图3.2 NSGA-Ⅱ关键子程序算法4、NSGA-Ⅱ算法的优、缺点5、NSGA-Ⅱ算法的应用5.1公交调度优化问题5.2轨道电路维修策略问题1、多目标进化算法进化算法是一类模拟生物自然选择与自然.

2021-08-06 16:27:10 18073 1

原创 多目标粒子群学习笔记(MOPSO)

目录注释:是学习之余整理的资料,如有不对的地方还请指教,十分感谢!1.单目标PSO的流程 2.多目标PSO算法步骤2.1初始阶段​2.2进化产生下一代种群2.3更新Archive集2.4Archive 集的截断操作3.对于PSO,MOPSO做出的改进4.MOPSO的发展现状和应用1.单目标PSO的流程适应度:个体的适应度(fitness)指的是个体在种群生存的优势程度度量,用于区分个体的“好与坏”。适应度使用适应度函数(fitness functi...

2021-08-03 21:27:44 20317 7

原创 单目标粒子群学习笔记(PSO)

1、粒子群算法的简介与描述1.1粒子群算法的简介1.2粒子群算法的简单描述2、粒子群算法的原理与流程2.1粒子群算法的基本原理2.2粒子群算法的流程2.3认识参数2.4粒子群算法的流程图3、粒子群算法的优缺点3.1粒子群算法的优点3.2 粒子群算法的缺点4、粒子群算法的改进5、粒子群算法的应用方向5.1标准粒子群算法的应用方向1、粒子群算法的简介与描述1.1粒子群算法的简介 粒子群优化(PSO, particle swar...

2021-08-01 17:05:18 1911 1

基于分解的多目标进化算法原代码(matlab)MOEA-D.zip

MOEA/D原代码(matlab)

2021-08-10

基于混合粒子群算法的TSP搜索算法.zip

PSO粒子群算法(matlab)

2021-08-10

多目标优化系列SPEA2原代码(matlab)SPEA2.zip

多目标优化系列SPEA2原代码(matlab)

2021-08-10

多目标粒子群算法原代码mopsoMOPSO.zip

多目标粒子群算法原代码mopso

2021-08-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除