Social Recommendation with Missing Not at Random Data(ICDM 2018)参考文献

本文综述了社交网络中推荐系统的最新研究进展,涵盖了从矩阵分解到深度学习的各种算法,探讨了信任传播、社交影响力和社会关系在个性化推荐中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一部分 带图的文章链接:https://blog.csdn.net/ciecus_csdn/article/details/84454425

第二部分 算法以及实验部分链接:https://blog.csdn.net/ciecus_csdn/article/details/84454128

第三部分 参考文献:https://blog.csdn.net/ciecus_csdn/article/details/84480998

REFERENCES

  1. [1]  S.-H. Yang, B. Long, A. Smola, N. Sadagopan, Z. Zheng, and H. Zha, “Like like alike: joint friendship and interest propagation in social networks,” in Proceedings of the 20th international conference on World wide web. ACM, 2011, pp. 537–546.

  2. [2]  T. Zhao, J. McAuley, and I. King, “Leveraging social connections to improve personalized ranking for collaborative filtering,” in Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. ACM, 2014, pp. 261–270.

  3. [3]  G.Guo,J.Zhang,andN.Yorke-Smith,“Trustsvd:Collaborativefiltering with both the explicit and implicit influence of user trust and of item ratings,” in AAAI, 2015.

  4. [4]  B. M. Marlin and R. S. Zemel, “Collaborative prediction and ranking with non-random missing data,” in Proceedings of the third ACM conference on Recommender systems. ACM, 2009, pp. 5–12.

  5. [5]  B. M. Marlin, R. S. Zemel, S. Roweis, and M. Slaney, “Collaborative filtering and the missing at random assumption,” in UAI. AUAI Press, 2007, pp. 267–275.

  6. [6]  S. Ohsawa, Y. Obara, and T. Osogami, “Gated Probabilistic Matrix Factorization : Learning Users ’ Attention from Missing Values,” Ijcai, pp. 1888–1894, 2016.

  7. [7]  J.M.Herna ́ndez-Lobato,N.Houlsby,andZ.Ghahramani,“Probabilistic matrix factorization with non-random missing data.” in ICML, 2014, pp. 1512–1520.

  8. [8]  B. Pradel, N. Usunier, and P. Gallinari, “Ranking with non-random missing ratings: influence of popularity and positivity on evaluation metrics,” in Proceedings of the sixth ACM conference on Recommender systems. ACM, 2012, pp. 147–154.

  9. [9]  Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,” Computer, vol. 42, no. 8, 2009.

  10. [10]  A. Mnih and R. R. Salakhutdinov, “Probabilistic matrix factorization,” in NIPS, 2008, pp. 1257–1264.

  11. [11]  H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King, “Recommender systems with social regularization,” in Proceedings of the fourth ACM international conference on Web search and data mining. ACM, 2011, pp. 287–296.

  12. [12]  X. Yang, H. Steck, and Y. Liu, “Circle-based recommendation in online social networks,” in Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2012, pp. 1267–1275.

  13. [13]  X. Wang, W. Lu, M. Ester, C. Wang, and C. Chen, “Social recommen- dation with strong and weak ties,” in Proceedings of the 25th ACM In- ternational on Conference on Information and Knowledge Management. ACM, 2016, pp. 5–14.

  14. [14]  L. Xiao, Z. Min, Z. Yongfeng, L. Yiqun, and M. Shaoping, “Learning and transferring social and item visibilities for personalized recommen- dation,” in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. ACM, 2017, pp. 337–346.

  15. [15]  M. Jamali and M. Ester, “Trustwalker: a random walk model for combining trust-based and item-based recommendation,” in Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2009, pp. 397–406.

  16. [16]  H. Ma, H. Yang, M. R. Lyu, and I. King, “Sorec: social recommendation using probabilistic matrix factorization,” in Proceedings of the 17th ACM conference on Information and knowledge management. ACM, 2008, pp. 931–940.

  17. [17]  Y. Shen and R. Jin, “Learning personal+ social latent factor model for social recommendation,” in Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2012, pp. 1303–1311.

  18. [18]  B. Yang, Y. Lei, J. Liu, and W. Li, “Social collaborative filtering by trust,” IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 8, pp. 1633–1647, 2017.

  19. [19]  M. Jamali and M. Ester, “A matrix factorization technique with trust propagation for recommendation in social networks,” in Proceedings of the fourth ACM conference on Recommender systems. ACM, 2010, pp. 135–142.

  20. [20]  X. Wang, S. C. Hoi, M. Ester, J. Bu, and C. Chen, “Learning personal- ized preference of strong and weak ties for social recommendation,” in Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 1601–1610.

  21. [21]  H.Ma,I.King,andM.R.Lyu,“Learningtorecommendwithsocialtrust ensemble,” in Proceedings of the 32nd international ACM SIGIR con- ference on Research and development in information retrieval. ACM, 2009, pp. 203–210.

  22. [22]  J. Tang, H. Gao, and H. Liu, “mtrust: discerning multi-faceted trust in a connected world,” in Proceedings of the fifth ACM international conference on Web search and data mining. ACM, 2012, pp. 93–102.

  23. [23]  A. J. Chaney, D. M. Blei, and T. Eliassi-Rad, “A probabilistic model for using social networks in personalized item recommendation,” in Proceedings of the 9th ACM Conference on Recommender Systems. ACM, 2015, pp. 43–50.

  24. [24]  Y. Bao, H. Fang, and J. Zhang, “Leveraging decomposed trust in prob- abilistic matrix factorization for effective recommendation,” in AAAI, 2014, p. 350.

  25. [25]  E. Tulving, “Episodic memory: From mind to brain,” Annual review of psychology, vol. 53, no. 1, pp. 1–25, 2002.

  26. [26]  U. M. Dholakia and D. Talukdar, “How social influence affects con- sumption trends in emerging markets: An empirical investigation of the consumption convergence hypothesis,” Psychology & Marketing, vol. 21, no. 10, pp. 775–797, 2004.

  27. [27]  S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu, “Using of jaccard coefficient for keywords similarity,” in Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 1, no. 6, 2013.

  28. [28]  J. J. Louviere and G. Woodworth, “Design and analysis of simulated consumer choice or allocation experiments: an approach based on aggregate data,” Journal of marketing research, pp. 350–367, 1983.

  29. [29]  G. Palla, I. Dere ́nyi, I. Farkas, and T. Vicsek, “Uncovering the overlap- ping community structure of complex networks in nature and society,” Nature, vol. 435, no. 7043, pp. 814–818, 2005.

  30. [30]  M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic variational inference,” The Journal of Machine Learning Research, vol. 14, no. 1, pp. 1303–1347, 2013.

  31. [31]  T. S. Jaakkola and M. I. Jordan, “Bayesian parameter estimation via variational methods,” Statistics and Computing, vol. 10, no. 1, pp. 25– 37, 2000.

  32. [32]  J.M.Herna ́ndez-Lobato,N.Houlsby,andZ.Ghahramani,“Stochastic inference for scalable probabilistic modeling of binary matrices,” in International Conference on Machine Learning, 2014, pp. 379–387.

  33. [33]  A. Honkela, M. Tornio, T. Raiko, and J. Karhunen, “Natural conjugate gradient in variational inference,” in International Conference on Neural Information Processing. Springer, 2007, pp. 305–314.

### Graph Neural Networks in Social Recommendation Graph Neural Networks (GNNs) 的英文翻译为 **Graph Neural Networks**,而其在社交推荐中的应用可以描述为 **Application of Graph Neural Networks in Social Recommendations** 或者更具体的表述如 **Social Recommendation using Graph Neural Networks**。 #### 背景介绍 社交推荐系统利用用户之间的社会关系以及物品间的关联信息来提升推荐质量。由于图神经网络能够有效处理复杂的图结构数据并从中学习高阶特征[^1],因此 GNN 已成为该领域的重要工具之一。具体来说,在社交推荐场景下,用户的交互行为和社会联系可以通过图的形式建模,其中节点代表用户或项目,边则表示两者间的关系或互动强度[^3]。 #### 应用方式 一种典型的应用方法是构建包含用户-项目二分图的社会感知推荐框架,并在此基础上引入基于消息传递机制的消息传播算法以捕捉隐含模式[^4]。此外,考虑到实际应用场景中可能存在动态变化的情况(比如新增好友或者兴趣转移),部分研究还探索了如何结合时间维度的信息来进行更加精准的预测[^5]。 以下是实现这一过程的一个简单伪代码示例: ```python import torch from torch_geometric.nn import GCNConv class SocialRecommendationModel(torch.nn.Module): def __init__(self, num_user_features, num_item_features, hidden_channels): super(SocialRecommendationModel, self).__init__() self.conv1 = GCNConv(num_user_features + num_item_features, hidden_channels) self.conv2 = GCNConv(hidden_channels, 1) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.conv1(x, edge_index) x = torch.relu(x) x = self.conv2(x, edge_index) return torch.sigmoid(x).squeeze() ``` 此段代码定义了一个基础版本的用于社交推荐任务的两层图卷积网络模型(GCN),它接收融合后的用户和项目的特征作为输入,并最终输出每一对可能存在的链接概率值。 #### 总结 综上所述,借助于强大的表达能力和灵活性,图神经网络正在推动着社交推荐技术向着更高水平迈进。未来随着理论和技术的发展,相信会有更多创新性的解决方案被提出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值