hdu 6024 Building Shops (dp)

题意:有n个教室,从左到右建若干糖果屋,要求每个教室的本身或者左边至少有一个糖果屋,如果在这个点建糖果屋,花费为每个点的c,如果不建,花费为这个点到左边最近的糖果屋距离。求最小花费。

很明显是一道dp的题目,然而在比赛的时候却没有做出来,而且思路是完全偏了……所以挣扎了很长时间也没做出来,还是觉得自己好菜啊……

dp状态的定义其实是关键……如果状态定义对了,转移方程就很好想了,但是比赛的时候不知道为什么dp[i][j]将j定义为了建的数量,其实仔细想想确实是很有问题的,在这道题目中,并没有对数量进行限制,所以以这样定义,是很难写出来的……我们可以看到,在求花费的时候,很重要的一个因素就是i左边离它最近的糖果屋的距离,所以,这其实才是影响状态的一个重要因素,dp[i][j]表示为在第i个点时,距离最近的糖果屋为j,然后状态就很好写了……
对于 j<i ,dp[i][j]=min(dp[i-1][j]+dis(i,j));
当j==i时,dp[i][i]=min(dp[i-1][j])+a[i].c ,for all j
最后答案即为min(dp[i][1~n]);

又因为ll错了一发……

#include <cstdio>
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
#include<cmath>
#include <cstring>
#include <map>
#include <set>
#include <iomanip>
#include <bitset>
#define pb push_back
#define PI acos(-1)
#define fi first
#define se second
#define PII pair<int,int>
#define INF64 0x3f3f3f3f3f3f3f3f
using namespace std;
const int mod = 1e9+7;
const int MAX_P = 2e4+10;
const int maxn =3e3+10;
const int MAX_V = 5e5+10;
const int maxv = 1440;
typedef long long ll;
const int inf=2e9+10;

struct node{
    int c,x;
}a[maxn];
int n;
ll dp[maxn][maxn];
bool cmp(node p, node q)
{
    return p.x<q.x;
}
int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        for(int i=0;i<=n;i++)
            for(int j=0;j<=n;j++)
            dp[i][j]=INF64;
        for(int i=1;i<=n;i++)
            scanf("%d%d",&a[i].x,&a[i].c);
        sort(a+1,a+n+1,cmp);
        dp[1][1]=a[1].c;
        for(int i=2;i<=n;i++)
        {
            for(int j=1;j<i;j++)
                dp[i][j]=min(dp[i][j],dp[i-1][j]+a[i].x-a[j].x);
            for(int j=1;j<i;j++)
                dp[i][i]=min(dp[i][i],dp[i-1][j]);
            dp[i][i]+=a[i].c;
        }
        ll ans=INF64;
        for(int i=1;i<=n;i++)
            ans=min(ans,dp[n][i]);
        cout<<ans<<endl;
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值