poj 1364 King (差分约束 spfa)

题目链接

接触了差分约束系统,其实就是最短路。
这个题目题意理解起来有点麻烦,不过其实是很简单的模板题。
注意的点:用spfa时,因为图可能不是联通的,所以要加一个花费为0的超级源点。题目给点限制条件是大于小于,但是差分约束系统是有等号的,对于整数来说只要加一减一就可以。

记录模板

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int maxn=105;
const int maxe=10005;
int head[maxn],cnt=0;
struct Edge{
    int to,next;
    int w;
}edge[maxe];
void init()
{
    memset(head,-1,sizeof(head));
    cnt=0;
}
void add(int u,int v,int w)
{
    edge[cnt].to=v;
    edge[cnt].w=w;
    edge[cnt].next=head[u];
    head[u]=cnt++;
}
int dis[maxn],c[maxn],vis[maxn];
int n;
bool spfa(int s)
{
    queue<int> que;
    memset(dis,0x3f,sizeof(dis));
    memset(vis,0,sizeof(vis));
    memset(c,0,sizeof(c));
    dis[s]=0;
    que.push(s);
    vis[s]=1;
    c[s]++;
    while(!que.empty())
    {
        int u=que.front();
        que.pop();
        vis[u]=0;
        for(int i=head[u];~i;i=edge[i].next)
        {
            int v=edge[i].to;
            int w=edge[i].w;
            if(dis[u]+w<dis[v])
            {
                dis[v]=dis[u]+w;
                if(!vis[v])
                {
                    que.push(v);
                    vis[v]=1;
                    c[v]++;
                    if(c[v]>n+1) return false; //因为这里是n+1个点(不包括超级源点
                }
            }
        }
    }
    return true;
}

int main()
{
    int m;
    while(cin>>n)
    {
        if(n==0) break;
        cin>>m;
        init();
        for(int i=0;i<m;i++)
        {
            int a,b,w;
            char ch[5];
            scanf("%d%d%s%d",&a,&b,ch,&w);
            if(ch[0]=='g') add(b+a,a-1,-w-1);
            else add(a-1,b+a,w-1);
        }
        for(int i=0;i<=n;i++)
            add(n+1,i,0);
       if(spfa(n+1)) printf("lamentable kingdom\n");
       else printf("successful conspiracy\n");
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值