支持向量机SVM②——文本分类实战(SVM&KNN&贝叶斯&决策树)

本文介绍了如何使用SVM进行文本分类,并与KNN、贝叶斯和决策树算法进行对比。在Sklearn的fetch_20newsgroups数据集上,SVM表现优秀,尤其是线性核函数。贝叶斯参数最少,KNN需调整n_neighbors,决策树易过拟合,而SVM的线性核函数通常足够使用。
摘要由CSDN通过智能技术生成

SVM系列目录:
支持向量机SVM①——Sklearn核函数参数介绍(线性&高斯&多项式&sigmond)
支持向量机SVM③——通过4种核函数进行波斯顿房价回归预测

SVM基于其可以很好的处理高维数据集的特点,常应用在文本分类,图像识别等领域。本文先对Sklearn自带的fetch_20newsgroups数据集用SVM进行分类,然后再与KNN,贝叶斯,决策树三种分类算法进行对比。

代码如下:

① 导入数据

from sklearn.datasets import fetch_20newsgroups

categories = ['alt.atheism', 'soc.religion.christian', 'comp.graphics', 'sci.med']
train_data = fetch_20newsgroups(subset='train', shuffle=True,categories=categories,random_state=10)

② 特征向量化&TF-IDF&标准化

from sklearn.feature_extraction.text import TfidfVectorizer
tfidf_transformer = TfidfVectorizer()
tf_train_data = tfidf_t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值