个性推荐①——系统总结个性化推荐系统

本文全面概述了个性化推荐系统,包括其定义、方法、实现方式、成功案例和评价指标。从电商到音乐平台,推荐系统通过分析用户行为,解决信息过载问题,挖掘长尾价值。协同过滤、基于内容的推荐和社交推荐是常见的推荐策略。评价推荐系统不仅要看用户满意度和预测准确性,还要考虑覆盖率、多样性和新颖性。上线推荐系统需经过离线算法、用户调研和A/B测试等阶段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

个性推荐系列目录
个性推荐②—基于用户协同过滤算法原及优化方案
个性推荐③—基于物品的协同过滤算法及优化方案

本文是整理于个性推荐经典之作《推荐系统实战》,将会以十个大家最想问的问题,揭开个性化推荐系统的神秘面纱(文末有免费下载方式

一、你觉得个性推荐系统是什么?

分类查询,搜索引擎查询,再到个性推荐,都是解决信息过载的问题
前两者是在用户有明确需求时,可以非常方便地找到自己感兴趣的信息,而个性推荐是要解决当用户没有明确需求,或者无法用文字进行描述时,根据用户的历史行为,推荐给他感兴趣的信息
个性推荐的作用就是连接用户和信息:一是帮助用户发现自己感兴趣的信息,二是让信息尽可能展现给对它感兴趣的用户面前,实现用户和信息的双赢
在电商行业,个性推荐还可以根据用户的个性化需求,将用户感兴趣的长尾物品推荐给用户。零售货架成本高昂,因此20% 的主流商品可以实现80%的销售额,但是电商,由于货架非常便宜,
可以卖出更多平时难以见到的商品,这些商品小众但是数量多,总销售额也未必比主流商品低。

二、个性推荐系统一般有哪些方法?

1、社交推荐——问朋友,问社群
2、基于内容推荐——看过的电影导演,演员等,物品上的标签等
3、基于协同过滤算法——基于用户相似,或物品相似

三、个性推荐系统如何实现?

通过分析大量的用户行为日志,给用户提供不同的个性化页面展示,进而提高页面的点击率和转化率
主要应用领域:电商,影视,阅读,音乐,社交
主要由三部分组成:前端展示 + 后端的日志系统 + 推荐算法

四、个性推荐做得好的有哪些?

1、电商
亚马逊,贡献了20%的销售额,包括2类:
个性化推荐
① 基于物品的协同过滤——给用户推荐他们之前喜欢过的物品相似的物品
② 基于社交推荐——给用户推荐他们好友感兴趣的物品
相关推荐——打包销售,给予一定折扣
③ 基于购买——购买过这个商品的用户也会购买的其它商品
④ 基于浏览——浏览过这个商品的用户经常购买的其它商品

2、影视
网飞

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值