再次回顾验证与确认

本文探讨了验证与确认在软件开发中的区别。验证确保过程正确,即工作产品符合规定要求;确认确保结果正确,即产品适合预期用途。文章还提到了在某些行业如制药业中仅关注确认的情况。

过了许多年,再次回顾验证与确认。

1.“确认”是要证明所提供的(或将要提供的)产品适合其预计的用途,而“验证”则是要查明工作产品是否恰当地反映了规定的要求。换句话说,验证要保证“做得正确”,而确认则要保证“做的东西正确”。
2.验证注重“过程”,确认注重“结果”

3.(Verification) ---Are we producing the product right? (验证)
(Validation)   ---Are we producing the right product? (确认)

                                - Boehm


1.什么是验证?
验证 就是要用数据证明我们是不是在正确的制造产品。注意这里强调的是过程的正确性

2.什么是确认?

确认 就是要用数据证明我们是不是制造了正确的产品。注意这里强调的是结果的正确性。

 

对于部分行业,如制药行业,不关注过程,而只关注结果。因此在药品的GMP中只有validation,而没有Verification。

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/13180590/viewspace-672455/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/13180590/viewspace-672455/

基于TROPOMI高光谱遥感仪器获取的大气成分观测资料,本研究聚焦于大气污染物一氧化氮(NO₂)的空间分布浓度定量反演问题。NO₂作为影响空气质量的关键指标,其精确监测对环境保护大气科学研究具有显著价值。当前,利用卫星遥感数据结合先进算法实现NO₂浓度的高精度反演已成为该领域的重要研究方向。 本研究构建了一套以深度学习为核心的技术框架,整合了来自TROPOMI仪器的光谱辐射信息、观测几何参数以及辅助气象数据,形成多维度特征数据集。该数据集充分融合了不同来源的观测信息,为深入解析大气中NO₂的时空变化规律提供了数据基础,有助于提升反演模型的准确性环境预测的可靠性。 在模型架构方面,项目设计了一种多分支神经网络,用于分别处理光谱特征气象特征等多模态数据。各分支通过独立学习提取代表性特征,并在深层网络中进行特征融合,从而综合利用不同数据的互补信息,显著提高了NO₂浓度反演的整体精度。这种多源信息融合策略有效增强了模型对复杂大气环境的表征能力。 研究过程涵盖了系统的数据处理流程。前期预处理包括辐射定标、噪声抑制及数据标准化等步骤,以保障输入特征的质量一致性;后期处理则涉及模型输出的物理量转换结果验证,确保反演结果符合实际大气浓度范围,提升数据的实用价值。 此外,本研究进一步对不同功能区域(如城市建成区、工业带、郊区及自然背景区)的NO₂浓度分布进行了对比分析,揭示了人类活动污染物空间格局的关联性。相关结论可为区域环境规划、污染管控政策的制定提供科学依据,助力大气环境治理公共健康保护。 综上所述,本研究通过融合TROPOMI高光谱数据多模态特征深度学习技术,发展了一套高效、准确的大气NO₂浓度遥感反演方法,不仅提升了卫星大气监测的技术水平,也为环境管理决策支持提供了重要的技术工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值