解题思路
N皇后问题就是是NP完全类问题的一个典型实例,它没有多项式时间算法解。
在设计算法求解的时候,我们应该尽量考虑减少搜索次数和判断次数,尽量减少循环和递归的次数,从而降低求解耗时。
注意:将棋盘上不能放的点去除。因为是按照每行每行去放皇后,所以只需要判断西北方和东北方以及上方有无皇后即可,下方由于row 值更大,不存在皇后,无须判断。递归执行后记得将点复原。
代码
void solveNQueens(vector<vector<string>>& res, vector<string>& nQueens, int row, int& n) {
if (row == n) {
res.push_back(nQueens);
return;
}
for (int col = 0; col < n; col++) {
if (isValid(nQueens, row, col, n)) {
nQueens[row][col] = 'Q';
solveNQueens(res, nQueens, row + 1, n);
nQueens[row][col] = '.';
}
}
}
bool isValid(vector<string>& nQueens, int row, int col, int& n) {
// 判断同一列上有无皇后
for (int i = 0; i < row; i++) {
if (nQueens[i][col] == 'Q') return false;
}
// 判断西北方向
for (int i = row - 1, j = col - 1; i >= 0 && j >=0; i--, j--) {
if (nQueens[i][j] == 'Q') return false;
}
// 判断东北方向
for (int i = row + 1, j = col + 1; i >= 0 && j < n; i--, j++) {
if (nQueens[i][j] == 'Q') return false;
}
return true;
}
vector<vector<string>> solveNQueens(int n) {
vector<vector<string>> res;
vector<string> nQueens(n, string(n, '.'));
solveNQueens(res, nQueens, 0, n);
return res;
}