题意:每次询问 phi[1]+phi[2]+…+phi[n],n<=10^6
若p是质数,if( n%p==0 && (n/p)%p==0 ) phi(n)=phi(n/p)*p
if( n%p==0 && (n/p)%p!=0 ) phi(n)=phi(n/p)*(p-1)
2. 线性筛法可以求出一个数的最小质因子
注意:
1. 欧拉函数的性质:若p是质数,if( n%p==0 && (n/p)%p==0 ) phi(n)=phi(n/p)*p
if( n%p==0 && (n/p)%p!=0 ) phi(n)=phi(n/p)*(p-1)
2. 线性筛法可以求出一个数的最小质因子
因此,用线性筛法递推地预处理欧拉函数即可
代码
#include<stdio.h>
#include<stdlib.h>
long long f[1000005];
int no[1000005],pri[1000005],phi[1000005];
int main()
{
int n,i,j,p=0;
phi[1]=1;
for(i=2;i<=1000000;i++)
{
if(no[i]==0)
{
pri[++p]=i;
phi[i]=i-1;
}
for(j=1;j<=p&&pri[j]*i<=1000000;j++)
{
no[pri[j]*i]=1;
if(i%pri[j]==0)
{
phi[pri[j]*i]=phi[i]*pri[j];
break;
}
else phi[pri[j]*i]=phi[i]*(pri[j]-1);
}
}
for(i=2;i<=1000000;i++)
f[i]=(long long)phi[i]+f[i-1];
while(scanf("%d",&i)&&i!=0) printf("%lld\n",f[i]);
return 0;
}