SPFA-算法

      修改过的SPFA模板,感觉还不错(感觉自己在卖豆腐)。

   

#include <iostream>
#include <deque>
#include <stack>
#include <vector>
using namespace std;
 
const int MAXN=100;
const int INF=0x7FFFFFFF;
 
struct edge
{
    int to,weight;         //weight:权值
};

vector<edge> adjmap[MAXN]; //邻接矩阵
bool in_queue[MAXN];       //顶点是否在队列中
int in_sum[MAXN];          //顶点入队次数
int dist[MAXN];            //源点到各点的最短路径
int path[MAXN];            //存储到达i的前一个顶点
int nodesum;               //顶点数
int edgesum;               //边数
 
bool SPFA(int source)
{
    deque<int> dq;
    int i,j,x,to;
    for(i=1;i<=nodesum;i++)
    {
        in_sum[i]=0;
        in_queue[i]=false;
        dist[i]=INF;
        path[i]=-1;
    }
    dq.push_back(source);
    in_sum[source]++;
    dist[source]=0;
    in_queue[source]=true;
    //初始化完成
 
    while(!dq.empty())
    {
        x=dq.front();
        dq.pop_front();
        in_queue[x]=false;
        for(i=0;i<adjmap[x].size();i++)
        {
            to=adjmap[x][i].to;
            if((dist[x]<INF)&&(dist[to]>dist[x]+adjmap[x][i].weight))
            {
                dist[to]=dist[x]+adjmap[x][i].weight;
                path[to]=x;
                if(!in_queue[to])
                {
                    in_queue[to]=true;
                    in_sum[to]++;
                    if(in_sum[to]==nodesum) return false;  //存在负圈。
                    if(!dq.empty())
                    {
                        if(dist[to]>dist[dq.front()]) dq.push_back(to);
                        else dq.push_front(to);
                    }else dq.push_back(to); //把最小的放到最前面
                }
            }
        }
    }
    return true;
}
 
void Print_Path(int x)
{
    stack<int> s;
    int w=x;
    while(path[w]!=-1)
    {
        s.push(w);
        w=path[w];
    }
    cout<<"顶点到顶点"<<x<<"的最短路径长度为:"<<dist[x]<<endl;//若不是以 1 为起点,可修改、    
    cout<<"所经过的路径为:1";
    while(!s.empty())
    {
        cout<<s.top()<<"";
        s.pop();
    }
    cout<<endl;
}
 
int main()
{
    int i,s,e,w;
    edge temp;
    cout<<"输入顶点数和边数:";
    cin>>nodesum>>edgesum;
    for(i=1;i<=nodesum;i++)
    adjmap[i].clear();            //清空邻接表,初始化。
    for(i=1;i<=edgesum;i++)
    {
        cout<<"输入第"<<i<<"条边的起点、终点还有对应的权值:";
        cin>>s>>e>>w;
        temp.to=e;
        temp.weight=w;
        adjmap[s].push_back(temp);
    }
    if(SPFA(1))                 //若不是以 1 为起点,慎入。
    {
        for(i=2;i<=nodesum;i++) Print_Path(i);
    } else cout<<"图中存在负权回路"<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值