【动态规划】背包九讲-完全背包

完全背包

题目:有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。

第 i 种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。

完全背包问题,比起0-1背包更符合动态规划的一般方式,由前往后递推。

那么在之前的两个嵌套循环当中再添加一个循环用来表示加入 k 件 i 物品后的价值量与 i -1 的循环形成的价值量做比较,取最优。

	for(int i = 1;i <= N;i ++)
		for(int j = 1;j <= V;j ++)
			for(int k = 0;k*v[i-1] <= j;k ++)
				dp[i][j] = max(dp[i][j],dp[i-1][j-k*v[i-1]]+k*w[i-1]);

完整代码:

#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
 
/*
  完全背包
  每种物品可以选任意次,要求实现给定容积物品价值最大 
*/ 
const int N = 4; //物品个数 
const int V = 5; //背包容积 
int w[N] = {2,4,4,5}; //物品价值
int v[N] = {1,2,3,4}; //物品体积
 
int knapsack(){
    //dp[i][j]是考虑前i件物品并且体积为j时的价值量最优解 
	vector<vector<int> >  dp(N+1,vector<int>(V+1)); //dp初始化 
	for(int i = 1;i <= N;i ++)
		for(int j = 1;j <= V;j ++)
			for(int k = 0;k*v[i-1] <= j;k ++) //在容积范围内放尽可能多的i物品与之前的价值量对比 
				dp[i][j] = max(dp[i][j],dp[i-1][j-k*v[i-1]]+k*w[i-1]);
	//打印状态转移矩阵 
	for(int i = 1;i <= N;i ++){
		for(int j = 1;j <= V;j ++) cout<<dp[i][j]<<" ";
		cout<<endl;	
	}	
	//返回结果 
	return dp[N][V];
} 
 
int main(){
	cout<<knapsack();
} 

运行结果:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jiawen9

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值