数据分析常见指标

数据分析常见指标

一、用户数据

二、行为数据

三、业务数据

总结:

附录:总体指标大全


一、用户数据

可从用户来源、用户存量、用户增量、用户健康度四个常用维度去看

  1. 用户来源:指用户来源的渠道,比如:百度自然搜索、百度关键字投放、搜狗、微信等
  2. 用户存量:指日活DAU(Daily Active User,日活跃用户数量)、月活MAU(Monthly Active User,月活跃用户数量)等用户活跃数据。注:需要说明的是MAU不等于各日的DAU之和,需要对用户去重统计才有意义。
  3. 用户增量:指新增用户,定义新增用户的流程节点和基于维度不同,统计出来的数据不同,在日常工作中,要和团队明确统一定义的标准,降低沟通成本
  4. 用户健康度:可用用户留存率等指标衡量,关于留存率计算一般有三种算法
  • 算法一:第七天/第一天*100%,7日日留存。这种计算方式只关心特定日的留存情况,避免其他日数据的干扰
  • 算法二:第二天~第七天去重后/第一天*100%,7日内留存。引入其他日数据,适用于有固定使用周期,且周期较长的业务。比如:电商等产品在周末的访问量下降,采用这种算法可以规避周期带来的影响
  • 算法三:第七天/第〇天*100%。新增当日为第0日,下一日为第1日,某种程度上能抵消星期级别的波动

二、行为数据

可从访问次数/频率、访问时长、访问转化、访问跳出四个常用维度去看

  1. 访问次数/频率:可用PV(Page View,页面浏览量)、UV(Unique Visitor,独立访客量)、访问深度来呈现
    1. PV指页面访问次数,UV指访客人数
    2. 访问深度:用来衡量用户对产品的了解程度
      1. 算法一:用户对某些关键行为的访问次数
      2. 算法二:将产品内容/功能分为几个层级,以用户本次访问过最深的一级计算
  2. 访问时长:可一定程度量化当前页面内容对用户的吸引程度。注:在处理访问时长数据时,需要注意剔除一些非常大的值,避免用户去做其他事情页面没关这种极端情况带来的干扰
  3. 访问转化:指用户访问相关页面后,转化成注册用户、付费用户的比率
  4. 访问跳出&
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值