spark streaming运行原理源代码分析

本文深入解析了Spark Streaming的工作流程,从StreamingContext的启动过程,到JobScheduler和ReceiverTracker的运作机制,再到BlockGenerator的数据接收与存储方式,最后介绍了JobGenerator如何生成和运行job。
摘要由CSDN通过智能技术生成
运行流程

在这里插入图片描述

组件介绍:
Driver
ReceiverTracker:负责接收BlockGenerator发送过来的Block信息。
JobScheduler:根据ReceiverTracker的Block信息,定期生成RDD计算任务,并这些Task提交到Executor上执行。

Executor
Receiver:负责接收数据源的数据
BlockGenerator:定期将Receiver的数据封装成Block再保存到BlockManager,并向ReceiverTracker发送块信息。

streamingcontext启动

streamingcontext是spark streaming的程序入口,先看streamingcontext中的重要变量。

  // sparkContext,因为spark streaming最终也是调用spark core
  private[streaming] val sc: SparkContext = {
    if (_sc != null) {
      _sc
    } else if (isCheckpointPresent) {
      SparkContext.getOrCreate(_cp.createSparkConf())
    } else {
      throw new SparkException("Cannot create StreamingContext without a SparkContext")
    }
  }
  
  //保存Dtream的依赖关系
  private[streaming] val graph: DStreamGraph = {
    if (isCheckpointPresent) {
      _cp.graph.setContext(this)
      _cp.graph.restoreCheckpointData()
      _cp.graph
    } else {
      require(_batchDur != null, "Batch duration for StreamingContext cannot be null")
      val newGraph = new DStreamGraph()
      newGraph.setBatchDuration(_batchDur)
      newGraph
    }
  }

  //JobScheduler 调度batch间隔生成的job
  private[streaming] val scheduler = new JobScheduler(this)

spark streaming的启动工作主要在start方法中,核心是启动了JobScheduler。

def start(): Unit = synchronized {
    state match {
      case INITIALIZED =>
        startSite.set(DStream.getCreationSite())
        StreamingContext.ACTIVATION_LOCK.synchronized {
          StreamingContext.assertNoOtherContextIsActive()
          try {
            validate()
            ThreadUtils.runInNewThread("streaming-start") {
              sparkContext.setCallSite(startSite.get)
              sparkContext.clearJobGroup()
              sparkContext.setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, "false")
              savedProperties.set(SerializationUtils.clone(sparkContext.localProperties.get()))
              // 调用JobScheduler的start方法
              scheduler.start()
            }
            state = StreamingContextState.ACTIVE
            scheduler.listenerBus.post(
              StreamingListenerStreamingStarted(System.currentTimeMillis()))
          } catch {
            case NonFatal(e) =>
              logError("Error starting the context, marking it as stopped", e)
              scheduler.stop(false)
              state = StreamingContextState.STOPPED
              throw e
          }
          StreamingContext.setActiveContext(this)
        }
        logDebug("Adding shutdown hook") // force eager creation of logger
        shutdownHookRef = ShutdownHookManager.addShutdownHook(
          StreamingContext.SHUTDOWN_HOOK_PRIORITY)(() => stopOnShutdown())
        assert(env.metricsSystem != null)
        env.metricsSystem.registerSource(streamingSource)
        uiTab.foreach(_.attach())
        logInfo("StreamingContext started")
      case ACTIVE =>
        logWarning("StreamingContext has already been started")
      case STOPPED =>
        throw new IllegalStateException("StreamingContext has already been stopped")
    }
  }

JobScheduler start方法启动了receiverTracker和jobGenerator。

def start(): Unit = synchronized {
    if (eventLoop != null) return 

    logDebug("Starting JobScheduler")
    eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {
      override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event)

      override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e)
    }
    eventLoop.start()
    for {
      inputDStream <- ssc.graph.getInputStreams
      rateController <- inputDStream.rateController
    } ssc.addStreamingListener(rateController)

    listenerBus.start()
    // 创建ReceiverTracker
    receiverTracker = new ReceiverTracker(ssc)
    inputInfoTracker = new InputInfoTracker(ssc)

    val executorAllocClient: ExecutorAllocationClient = ssc.sparkContext.schedulerBackend match {
      case b: ExecutorAllocationClient => b.asInstanceOf[ExecutorAllocationClient]
      case _ => null
    }
	// 分配Executor
    executorAllocationManager = ExecutorAllocationManager.createIfEnabled(
      executorAllocClient,
      receiverTracker,
      ssc.conf,
      ssc.graph.batchDuration.milliseconds,
      clock)
    executorAllocationManager.foreach(ssc.addStreamingListener)
    // 启动receiverTracker
    receiverTracker.start()
    // 启动jobGenerator
    jobGenerator.start()
    executorAllocationManager.foreach(_.start())
    logInfo("Started JobScheduler")
  }

operator算子注册
spark streaming中Dstream的各种算子最终会形成一个调用链,当outputOperator类算子调用时,这个关系保存在sparkstreaming的graph中。下面以print为例分析operator算子

def print(): Unit = ssc.withScope {
    print(10)
}

def print(num: Int): Unit = ssc.withScope {
    def foreachFunc: (RDD[T], Time) => Unit = {
        (rdd: RDD[T], time: Time) => {
            val firstNum = rdd.take(num + 1)
            // scalastyle:off println
            println("-------------------------------------------")
            println(s"Time: $time")
            println("-------------------------------------------")
            firstNum.take(num).foreach(println)
            if (firstNum.length > num) println("...")
            println()
            // scalastyle:on println
        }
    }
    foreachRDD(context.sparkContext.clean(foreachFunc), displayInnerRDDOps = false)
}

private def foreachRDD(
    foreachFunc: (RDD[T], Time) => Unit,
    displayInnerRDDOps: Boolean): Unit = {
    new ForEachDStream(this,
                       context.sparkContext.clean(foreachFunc, false), displayInnerRDDOps).register()
}

private[streaming] def register(): DStream[T] = {
    ssc.graph.addOutputStream(this)
    this
}
receiver启动

receiverTracker的start方法会调用launchReceivers来启动receiver

//ReceiverTracker start方法 
def start(): Unit = synchronized {
    if (isTrackerStarted) {
      throw new SparkException("ReceiverTracker already started")
    }
    if (!receiverInputStreams.isEmpty) {
      // 初始化RPC endpoint
      endpoint = ssc.env.rpcEnv.setupEndpoint(
        "ReceiverTracker", new ReceiverTrackerEndpoint(ssc.env.rpcEnv))
      // 调用launchReceivers来启动Receiver
      if (!skipReceiverLaunch) launchReceivers()
      logInfo("ReceiverTracker started")
      trackerState = Started
    }
  }

launchReceivers 方法中会发送StartAllReceivers消息

private def launchReceivers(): Unit = {
    val receivers = receiverInputStreams.map { nis =>
      val rcvr = nis.getReceiver()
      rcvr.setReceiverId(nis.id)
      rcvr
    }
    runDummySparkJob()
    logInfo("Starting " + receivers.length + " receivers")
    // 发送启动所有receiver的消息
    endpoint.send(StartAllReceivers(receivers))
  }

receive方法中有对StartAllReceivers消息的处理

override def receive: PartialFunction[Any, Unit] = {
      // 启动所有receivers
      case StartAllReceivers(receivers) =>
        val scheduledLocations = schedulingPolicy.scheduleReceivers(receivers, getExecutors)
        // 遍历receivers,然后启动每一个receiver
        for (receiver <- receivers) {
          val executors = scheduledLocations(receiver.streamId)
          updateReceiverScheduledExecutors(receiver.streamId, executors)
          receiverPreferredLocations(receiver.streamId) = receiver.preferredLocation
          startReceiver(receiver, executors)
        }
        ...
   }
     

startReceiver方法中会提交一个job,负责在每个executor上启动receiver

private def startReceiver(
        receiver: Receiver[_],
        scheduledLocations: Seq[TaskLocation]): Unit = {
      def shouldStartReceiver: Boolean = {
        !(isTrackerStopping || isTrackerStopped)
      }

      val receiverId = receiver.streamId
      if (!shouldStartReceiver) {
        onReceiverJobFinish(receiverId)
        return
      }

      val checkpointDirOption = Option(ssc.checkpointDir)
      val serializableHadoopConf =
        new SerializableConfiguration(ssc.sparkContext.hadoopConfiguration)

      // receiver在worker节点启动的方法(ReceiverSupervisorImpl的start方法)
      val startReceiverFunc: Iterator[Receiver[_]] => Unit =
        (iterator: Iterator[Receiver[_]]) => {
          if (!iterator.hasNext) {
            throw new SparkException(
              "Could not start receiver as object not found.")
          }
          if (TaskContext.get().attemptNumber() == 0) {
            val receiver = iterator.next()
            assert(iterator.hasNext == false)
            val supervisor = new ReceiverSupervisorImpl(
              receiver, SparkEnv.get, serializableHadoopConf.value, checkpointDirOption)
            supervisor.start()
            supervisor.awaitTermination()
          } else {
            // It's restarted by TaskScheduler, but we want to reschedule it again. So exit it.
          }
        }
        
      val receiverRDD: RDD[Receiver[_]] =
        if (scheduledLocations.isEmpty) {
          ssc.sc.makeRDD(Seq(receiver), 1)
        } else {
          val preferredLocations = scheduledLocations.map(_.toString).distinct
          ssc.sc.makeRDD(Seq(receiver -> preferredLocations))
        }
      receiverRDD.setName(s"Receiver $receiverId")
      ssc.sparkContext.setJobDescription(s"Streaming job running receiver $receiverId")
      ssc.sparkContext.setCallSite(Option(ssc.getStartSite()).getOrElse(Utils.getCallSite()))

      // 提交启动receiver的job到spark核心进行启动
      val future = ssc.sparkContext.submitJob[Receiver[_], Unit, Unit](
        receiverRDD, startReceiverFunc, Seq(0), (_, _) => Unit, ())
      future.onComplete {
        case Success(_) =>
          if (!shouldStartReceiver) {
            onReceiverJobFinish(receiverId)
          } else {
            logInfo(s"Restarting Receiver $receiverId")
            self.send(RestartReceiver(receiver))
          }
        case Failure(e) =>
          if (!shouldStartReceiver) {
            onReceiverJobFinish(receiverId)
          } else {
            logError("Receiver has been stopped. Try to restart it.", e)
            logInfo(s"Restarting Receiver $receiverId")
            self.send(RestartReceiver(receiver))
          }
      }(ThreadUtils.sameThread)
      logInfo(s"Receiver ${receiver.streamId} started")
    }

至此receiver启动完毕

数据接收

BlockGenerator是Receiver中比较重要的一个类,主要作用是将收到的单条数据写入buffer,然后再定时将buffer封装为块,并进行存储和向Driver汇报。

private[streaming] class BlockGenerator(
    listener: BlockGeneratorListener, // 监听器,用来监听事件
    receiverId: Int,
    conf: SparkConf,
    clock: Clock = new SystemClock()
  ) extends RateLimiter(conf) with Logging {


//定时器,定时将currentBuffer中的数据封装成Block,然后推送到blocksForPushing里
  private val blockIntervalTimer =
    new RecurringTimer(clock, blockIntervalMs, updateCurrentBuffer, "BlockGenerator")
  // blockQueueSize 队列的大小
  private val blockQueueSize = conf.getInt("spark.streaming.blockQueueSize", 10)
  // 一个队列,用来存取封装好的Block
  private val blocksForPushing = new ArrayBlockingQueue[Block](blockQueueSize)
  // 这是一个线程,用来从blocksForPushing中取出Block,然后进行存储,汇报ReceiverTracker
  private val blockPushingThread = new Thread() { override def run() { keepPushingBlocks() } }
  // 用来暂存接受到的数据
  @volatile private var currentBuffer = new ArrayBuffer[Any]
 // 按照时间生成块,然后将块推到blocksForPushing中
  private def updateCurrentBuffer(time: Long): Unit = {
    try {
      var newBlock: Block = null
      synchronized {
        if (currentBuffer.nonEmpty) {
          val newBlockBuffer = currentBuffer
          currentBuffer = new ArrayBuffer[Any]
          val blockId = StreamBlockId(receiverId, time - blockIntervalMs)
          listener.onGenerateBlock(blockId)
          newBlock = new Block(blockId, newBlockBuffer)
        }
      }

      if (newBlock != null) {
        blocksForPushing.put(newBlock)  // put is blocking when queue is full
      }
    } catch {
      case ie: InterruptedException =>
        logInfo("Block updating timer thread was interrupted")
      case e: Exception =>
        reportError("Error in block updating thread", e)
    }
  }

  // 推送块
  private def keepPushingBlocks() {
    logInfo("Started block pushing thread")

    def areBlocksBeingGenerated: Boolean = synchronized {
      state != StoppedGeneratingBlocks
    }

    try {
      while (areBlocksBeingGenerated) {
        Option(blocksForPushing.poll(10, TimeUnit.MILLISECONDS)) match {
          case Some(block) => pushBlock(block)
          case None =>
        }
      }
      
      logInfo("Pushing out the last " + blocksForPushing.size() + " blocks")
      while (!blocksForPushing.isEmpty) {
        val block = blocksForPushing.take()
        logDebug(s"Pushing block $block")
        pushBlock(block)
        logInfo("Blocks left to push " + blocksForPushing.size())
      }
      logInfo("Stopped block pushing thread")
    } catch {
      case ie: InterruptedException =>
        logInfo("Block pushing thread was interrupted")
      case e: Exception =>
        reportError("Error in block pushing thread", e)
    }
  }

  // 推送块
  private def pushBlock(block: Block) {
    listener.onPushBlock(block.id, block.buffer)
    logInfo("Pushed block " + block.id)
  }
  }

BlockGenerator中使用了一个ArrayBuffer来不断的接收存储数据,然后会按时将ArrayBuffer中的数据封装为Block。另有一个队列ArrayBlockingQueue来存取Block,一边存一边取,这样就实现了数据的接收与存储。

pushBlock中调用了listener.onPushBlock(),listener是构造BlockGenerator时传进来的,使用的是ReceiverSupervisorImpl中的defaultBlockGeneratorListener。

private val defaultBlockGeneratorListener = new BlockGeneratorListener {
    def onAddData(data: Any, metadata: Any): Unit = { }

    def onGenerateBlock(blockId: StreamBlockId): Unit = { }

    def onError(message: String, throwable: Throwable) {
        reportError(message, throwable)
    }
	// 推块的时候调用,它又会调用ReceiverSupervisorImpl.pushArrayBuffer()
    def onPushBlock(blockId: StreamBlockId, arrayBuffer: ArrayBuffer[_]) {
        pushArrayBuffer(arrayBuffer, None, Some(blockId))
    }
}

// 将接收到的数据的ArrayBuffer作为数据块存储到Spark的内存中
def pushArrayBuffer(
    arrayBuffer: ArrayBuffer[_],
    metadataOption: Option[Any],
    blockIdOption: Option[StreamBlockId]
) {
    // 调用pushAndReportBlock()
    pushAndReportBlock(ArrayBufferBlock(arrayBuffer), metadataOption, blockIdOption)
}

// 将块数据进行存储,然后汇报给Driver
def pushAndReportBlock(
    receivedBlock: ReceivedBlock,
    metadataOption: Option[Any],
    blockIdOption: Option[StreamBlockId]
) {
    val blockId = blockIdOption.getOrElse(nextBlockId)
    val time = System.currentTimeMillis
    // 这步会真正的存储数据
    val blockStoreResult = receivedBlockHandler.storeBlock(blockId, receivedBlock)
    logDebug(s"Pushed block $blockId in ${(System.currentTimeMillis - time)} ms")
    val numRecords = blockStoreResult.numRecords
    val blockInfo = ReceivedBlockInfo(streamId, numRecords, metadataOption, blockStoreResult)
    // 将存储结果报告Driver
    if (!trackerEndpoint.askSync[Boolean](AddBlock(blockInfo))) {
        throw new SparkException("Failed to add block to receiver tracker.")
    }
    logDebug(s"Reported block 

receiver的作用主要是负责从各种数据源拉取数据。receiver的启动入口是ReceiverSupervisorImpl的start方法。ReceiverSupervisorImpl的父类是ReceiverSupervisor,因此start的实际执行体在ReceiverSupervisor的start方法中。

// ReceiverSupervisor的start方法
def start() {
    onStart()
    startReceiver()
}

// ReceiverSupervisorImpl的onStart方法
override protected def onStart() {
    registeredBlockGenerators.asScala.foreach { _.start() }
}

// BlockGenerator的start方法
def start(): Unit = synchronized {
    if (state == Initialized) {
      state = Active
      blockIntervalTimer.start()
      blockPushingThread.start()
      logInfo("Started BlockGenerator")
    } else {
      throw new SparkException(
        s"Cannot start BlockGenerator as its not in the Initialized state [state = $state]")
    }
  }


// 启动receiver
def startReceiver(): Unit = synchronized {
    try {
      if (onReceiverStart()) {
        logInfo(s"Starting receiver $streamId")
        receiverState = Started
        receiver.onStart()
        logInfo(s"Called receiver $streamId onStart")
      } else {
        stop("Registered unsuccessfully because Driver refused to start receiver " + streamId, None)
      }
    } catch {
      case NonFatal(t) =>
        stop("Error starting receiver " + streamId, Some(t))
    }
}
def start(): Unit = synchronized {
    if (state == Initialized) {
      state = Active
      blockIntervalTimer.start()
      blockPushingThread.start()
      logInfo("Started BlockGenerator")
    } else {
      throw new SparkException(
        s"Cannot start BlockGenerator as its not in the Initialized state [state = $state]")
    }
  }

BlockGenerator的start方法会启动块生成的定时器和推送块的线程。

startReceiver()方法中,调用receiver.onStart(),开始接收数据。Receiver是一个抽象类,不同的数据源有不同的实现。下面以SocketReceiver为例来剖析其实现。

private[streaming]
class SocketReceiver[T: ClassTag](
    host: String,
    port: Int,
    bytesToObjects: InputStream => Iterator[T],
    storageLevel: StorageLevel
  ) extends Receiver[T](storageLevel) with Logging {

  private var socket: Socket = _

  def onStart() {

    logInfo(s"Connecting to $host:$port")
    try {
      // 启动socket,开始监听
      socket = new Socket(host, port)
    } catch {
      case e: ConnectException =>
        restart(s"Error connecting to $host:$port", e)
        return
    }
    logInfo(s"Connected to $host:$port")

    // Start the thread that receives data over a connection
    new Thread("Socket Receiver") {
      setDaemon(true)
      override def run() { receive() }
    }.start()
  }
  
  def receive() {
    try {
      // 接收数据
      val iterator = bytesToObjects(socket.getInputStream())
      while(!isStopped && iterator.hasNext) {
      // 将接收到的数据进行存储
        store(iterator.next())
      }
      if (!isStopped()) {
        restart("Socket data stream had no more data")
      } else {
        logInfo("Stopped receiving")
      }
    } catch {
      case NonFatal(e) =>
        logWarning("Error receiving data", e)
        restart("Error receiving data", e)
    } finally {
      onStop()
    }
  }
}

onStart中启动了一个线程用于不断的接收数据并调用store()将接收到的数据进行存储。

def store(dataItem: T) {
    supervisor.pushSingle(dataItem)
  }

  /** Store an ArrayBuffer of received data as a data block into Spark's memory. */
  def store(dataBuffer: ArrayBuffer[T]) {
    supervisor.pushArrayBuffer(dataBuffer, None, None)
  }

  /**
   * Store an ArrayBuffer of received data as a data block into Spark's memory.
   * The metadata will be associated with this block of data
   * for being used in the corresponding InputDStream.
   */
  def store(dataBuffer: ArrayBuffer[T], metadata: Any) {
    supervisor.pushArrayBuffer(dataBuffer, Some(metadata), None)
  }

  /** Store an iterator of received data as a data block into Spark's memory. */
  def store(dataIterator: Iterator[T]) {
    supervisor.pushIterator(dataIterator, None, None)
  }
运行job

jobGenerator负责生成,运行job。

private[streaming]
class JobGenerator(jobScheduler: JobScheduler) extends Logging {
  // 定时器,按照批处理间隔定时向eventLoop发送生成job的消息
  private val timer = new RecurringTimer(clock, ssc.graph.batchDuration.milliseconds,
    longTime => eventLoop.post(GenerateJobs(new Time(longTime))), "JobGenerator")
  // job生成消息的事件队列
  private var eventLoop: EventLoop[JobGeneratorEvent] = null
}

下面看下JobGenerator的start方法,start方法中会启动eventLoop进行事件的处理。

def start(): Unit = synchronized {
    if (eventLoop != null) return // generator has already been started

    // Call checkpointWriter here to initialize it before eventLoop uses it to avoid a deadlock.
    // See SPARK-10125
    checkpointWriter
    // eventLoop的回调方法onReceive会调用processEvent(event)进行事件的处理
    eventLoop = new EventLoop[JobGeneratorEvent]("JobGenerator") {
      override protected def onReceive(event: JobGeneratorEvent): Unit = processEvent(event)

      override protected def onError(e: Throwable): Unit = {
        jobScheduler.reportError("Error in job generator", e)
      }
    }
    // 启动事件队列
    eventLoop.start()

    if (ssc.isCheckpointPresent) {
      restart()
    } else {
      startFirstTime()
    }
  }

startFirstTime中会启动timer并定期向eventLoop中发送GenerateJobs消息。

private def startFirstTime() {
    val startTime = new Time(timer.getStartTime())
    // 启动DStreamGraph
    graph.start(startTime - graph.batchDuration)
    // 启动定时器timer
    timer.start(startTime.milliseconds)
    logInfo("Started JobGenerator at " + startTime)
  }

eventLoop启动后会启动一个线程不断的来消费队列中的消息,处理方法为processEvent。

private def processEvent(event: JobGeneratorEvent) {
    logDebug("Got event " + event)
    event match {
      case GenerateJobs(time) => generateJobs(time) //根据时间生成job
      case ClearMetadata(time) => clearMetadata(time)
      case DoCheckpoint(time, clearCheckpointDataLater) =>
        doCheckpoint(time, clearCheckpointDataLater)
      case ClearCheckpointData(time) => clearCheckpointData(time)
    }
  }

对于GenerateJobs类型的消息调用generateJobs进行处理,generateJobs首先调用receiverTracker.allocateBlocksToBatch()给当前批分配需要处理的数据,之后调用DStreamGraph.generateJobs()生成job序列,如果生成成功,调用jobScheduler.submitJobSet提交job。

private def generateJobs(time: Time) {
    // Checkpoint all RDDs marked for checkpointing to ensure their lineages are
    // truncated periodically. Otherwise, we may run into stack overflows (SPARK-6847).
    ssc.sparkContext.setLocalProperty(RDD.CHECKPOINT_ALL_MARKED_ANCESTORS, "true")
    Try {
      // 调用receiverTracker给批分配数据
      jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
      // 在DStreamGraph中根据分配的块生成job
      graph.generateJobs(time) // generate jobs using allocated block
    } match {
      // 如果job生成成功,调用jobScheduler.submitJobSet提交job
      case Success(jobs) =>
        val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
        jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
      // 失败则打报告
      case Failure(e) =>
        jobScheduler.reportError("Error generating jobs for time " + time, e)
        PythonDStream.stopStreamingContextIfPythonProcessIsDead(e)
    }
    // 完成后进行checkpoint
    eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
  }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值