论文阅读
文章平均质量分 96
深度学习小学生
这个作者很懒,什么都没留下…
展开
-
2020-12-18 论文阅读
Deep learning-enabled breast cancer hormonal receptor status determination from base-level H&E stains2020年发表于Nature Communications摘要 对于初诊的乳腺癌患者,雌激素受体状态(ERS)是他们预后和治疗的重要分子标志物。在临床中,雌激素受体状态是通过免疫组化染色确定的。免疫组化昂贵又耗时,而且免疫组化过程的差异以及医生主观因素的影响都会导致结果不一致。相反,HE染原创 2021-02-01 14:20:37 · 1290 阅读 · 1 评论 -
2020-12-14 论文阅读
Deep learning with multimodal representation for pancancer prognosis prediction2019年发表于Bioinformatics杂志,论文传送门代码传送门摘要动机 估计肿瘤患者未来的病程对于医生来说是非常有价值的;目前临床上肿瘤患者拥有大量的多模态数据,然而现有的方法无法有效地利用这些多模态数据。为了解决这一问题,我们建立了一个多模神经网络模型,用来预测肿瘤患者的生存,研究使用了20种肿瘤的临床数据、mRNA表达数据、mi原创 2020-12-23 10:32:08 · 1269 阅读 · 2 评论 -
2020-12-05 论文阅读
Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study2018年发表于PLOS MEDICINE,中科院分区一区10+分,论文传送门摘要背景 几乎所有结直肠癌(CRC)患者都有可用的苏木精伊红染色(HE染色)的病理组织切片。这些图片蕴含丰富的定量信息,但是却鲜有研究利用这些图像提取预后标志物。本研究则利用卷积神经网络(CN原创 2020-12-22 08:29:56 · 3345 阅读 · 1 评论 -
CNN在全视野数字化切片图像中的分析应用
文章目录前言内容介绍全视野数字切片CNN在WSI图像分析中的应用肿瘤组织病理学分型淋巴结转移细胞检测肿瘤患者预后的预测前言组织病理是临床疾病诊断的金标准。全视野数字切片(Whole slide image, WSI)弥补了传统玻璃切片易损、检索困难以及诊断可重复性差的缺点,与此同时也加大了医生的工作量。人工智能辅助医生进行WSI的分析,可以解决工作效率低的问题,并提高诊断的一致性。提示:以下是本篇文章正文内容,下面案例可供参考内容介绍全视野数字切片WSI是利用数字扫描仪对传统病理片进行扫描,原创 2020-09-07 14:48:27 · 1199 阅读 · 1 评论 -
论文Pyramid Attention Network for Semantic Segmentation笔记
该论文发表于2017CVPR,由北理工+旷视科技+北大共同完成论文传送门名词解释Global contextual information: 译为中文即为全局上下文信息,即图像中的物体并不是孤立的,像素之间都是有联系的,这种联系就是上下文信息,而全局上下文信息是从图像全局的像素之间的联系,以下面的图为例:...原创 2020-06-17 18:54:08 · 1513 阅读 · 0 评论