定义
设
f
:
D
↦
E
f:D\mapsto E
f:D↦E是一个映射,
g
:
G
↦
H
g:G\mapsto H
g:G↦H也是一个映射。如果
f
(
D
)
⊂
G
f(D)\subset G
f(D)⊂G,则从
ξ
∈
D
\xi\in D
ξ∈D开始,相继经
f
f
f和
g
g
g的作用,就得到
g
(
f
(
ξ
)
)
g(f(\xi))
g(f(ξ))这样的对应关系:
ξ
↦
g
(
f
(
ξ
)
)
\xi\mapsto g(f(\xi))
ξ↦g(f(ξ)),也是一个映射,我们把这个映射称为
g
g
g与
f
f
f的复合,记作
g
∘
f
g\circ f
g∘f。
简言之,映射
g
g
g与映射
f
f
f的复合定义为:
g
∘
f
:
D
↦
H
,
ξ
↦
g
(
f
(
ξ
)
)
.
g\circ f:D\mapsto H,\\ \xi \mapsto g(f(\xi)).
g∘f:D↦H,ξ↦g(f(ξ)).
例:设
f
:
R
↦
R
f:\mathbb{R} \mapsto \mathbb{R}
f:R↦R定义为
f
(
x
)
=
x
m
f(x)=x^{m}
f(x)=xm,则有
f
∘
f
(
x
)
=
f
(
f
(
x
)
)
=
(
x
m
)
m
=
x
m
2
f\circ f(x)=f(f(x))=(x^{m})^{m}=x^{m^2}
f∘f(x)=f(f(x))=(xm)m=xm2
例:设
f
(
x
)
=
x
2
f(x)=x^2
f(x)=x2和
g
(
x
)
=
s
i
n
x
g(x)=sinx
g(x)=sinx,计算
g
∘
f
g\circ f
g∘f和
f
∘
g
f\circ g
f∘g
解:
g
∘
f
(
x
)
=
g
(
f
(
x
)
)
=
s
i
n
(
x
2
)
=
s
i
n
x
2
g\circ f(x)=g(f(x))=sin(x^2)=sinx^2
g∘f(x)=g(f(x))=sin(x2)=sinx2,
f
∘
g
(
x
)
=
f
(
g
(
x
)
)
=
(
s
i
n
x
)
2
=
s
i
n
2
x
f\circ g(x)=f(g(x))=(sinx)^2=sin^2x
f∘g(x)=f(g(x))=(sinx)2=sin2x
性质
1.对于映射
f
f
f和映射
g
g
g,两种顺序的复合映射
g
∘
f
g\circ f
g∘f和
f
∘
g
f\circ g
f∘g不一定都有意义,即使有意义也不一定相同;
2.映射的复合满足结合律,即
(
f
∘
g
)
∘
h
=
f
∘
(
g
∘
h
)
(f\circ g) \circ h=f\circ (g\circ h)
(f∘g)∘h=f∘(g∘h)
证明:
(
f
∘
g
)
∘
h
=
f
∘
(
g
∘
h
)
(f\circ g)\circ h=f\circ (g\circ h)
(f∘g)∘h=f∘(g∘h)
证:
(
f
∘
g
)
∘
h
=
f
(
g
(
x
)
)
∘
h
=
f
(
g
(
h
(
x
)
)
)
(f\circ g)\circ h=f(g(x))\circ h=f(g(h(x)))
(f∘g)∘h=f(g(x))∘h=f(g(h(x))),
f
∘
(
g
∘
h
)
=
f
∘
(
g
(
h
(
x
)
)
)
=
f
(
g
(
h
(
x
)
)
)
f\circ (g\circ h)=f\circ (g(h(x)))=f(g(h(x)))
f∘(g∘h)=f∘(g(h(x)))=f(g(h(x)))
∴
(
f
∘
g
)
∘
h
=
f
∘
(
g
∘
h
)
\therefore (f\circ g)\circ h=f\circ(g\circ h)
∴(f∘g)∘h=f∘(g∘h),证毕。
证(详细版):
∵
f
∘
g
=
f
(
g
(
x
)
)
\because f\circ g=f(g(x))
∵f∘g=f(g(x)),令
u
=
f
(
g
(
x
)
)
,
∴
(
f
∘
g
)
∘
h
=
u
∘
h
=
u
(
h
(
x
)
)
u=f(g(x)),\therefore (f\circ g)\circ h=u\circ h=u(h(x))
u=f(g(x)),∴(f∘g)∘h=u∘h=u(h(x)),
∵
g
∘
h
=
g
(
h
(
x
)
)
\because g\circ h=g(h(x))
∵g∘h=g(h(x)),令
v
=
g
(
h
(
x
)
)
,
∴
f
∘
(
g
∘
h
)
=
f
∘
v
=
f
(
v
(
x
)
)
v=g(h(x)),\therefore f\circ (g\circ h)=f\circ v=f(v(x))
v=g(h(x)),∴f∘(g∘h)=f∘v=f(v(x)),
进行变量代换,得:
u
(
h
(
x
)
)
=
f
(
g
(
h
(
x
)
)
,
f
(
v
(
x
)
)
=
f
(
g
(
h
(
x
)
)
,
∴
u
(
h
(
x
)
)
=
f
(
v
(
x
)
)
u(h(x))=f(g(h(x)),f(v(x))=f(g(h(x)), \therefore u(h(x))=f(v(x))
u(h(x))=f(g(h(x)),f(v(x))=f(g(h(x)),∴u(h(x))=f(v(x)),即
(
f
∘
g
)
∘
h
=
f
∘
(
g
∘
h
)
(f\circ g)\circ h=f\circ (g\circ h)
(f∘g)∘h=f∘(g∘h),证毕。