第四章 解决面试题的思路
1.画图让抽象问题形象化
剑指 Offer 27. 二叉树的镜像
请完成一个函数,输入一个二叉树,该函数输出它的镜像。
例如输入:
4
/ \
2 7
/ \ / \
1 3 6 9
镜像输出:
4
/ \
7 2
/ \ / \
9 6 3 1
先序遍历这棵树的每个节点,如果遍历到的节点有子节点,就交换它的两个子节点。
TreeNode* mirrorTree(TreeNode* root) {
if(!root) return nullptr;
root->left = mirrorTree(root->left);
root->right = mirrorTree(root->right);
swap(root->left,root->right);
return root;
}
剑指 Offer 28. 对称的二叉树
请实现一个函数,用来判断一棵二叉树是不是对称的。如果一棵二叉树和它的镜像一样,那么它是对称的。
例如,二叉树 [1,2,2,3,4,4,3] 是对称的。
1
/ \
2 2
/ \ / \
3 4 4 3
但是下面这个 [1,2,2,null,3,null,3] 则不是镜像对称的:
1
/ \
2 2
\ \
3 3
bool isSymmetric(TreeNode* root) {
if(!root) return true;//如果根节点为空,直接返回true
return isMirror(root->left,root->right);
}
bool isMirror(TreeNode * root1,TreeNode *root2){
if(!root1 && !root2) return true;//需要判空
if(!root1 || !root2 || root1->val != root2->val) return false;//如果两个节点只有一个为空,一个不为空 或者值不相等,return false
return isMirror(root1->left,root2->right) && isMirror(root1->right,root2->left);//镜像对称是树A的左儿子 等于B树的右儿子
}
剑指 Offer 29. 顺时针打印矩阵
输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,3,6,9,8,7,4,5]
简单但是有些麻烦的题,需要把每一行每一列的遍历情况考虑到。
vector<int> spiralOrder(vector<vector<int>>& matrix) {
if(matrix.empty()) return vector<int>{};
int start = 0;
int rows = matrix.size(),cols = matrix[0].size();
vector<int> res;
while(start*2 < rows && start*2 < cols){//循环继续条件,从左上角(0,0)开始,一圈一圈打印
printMatrixInCircle(matrix, res, start);
++start;
}
return res;
}
void printMatrixInCircle(vector<vector<int>>& matrix, vector<int> &res, int start){//打印一圈
int endX = matrix.size() - start -1;//打印这一圈的最大行数
int endY = matrix[0].size() - start -1;//打印这一圈的最大列数
for(int i = start; i <= endY; ++i){//第一步从左往右打印,必有
res.emplace_back(matrix[start][i]);
}
if(endX > start){//第二步从上到下打印一列,存在第二步的前提是至少有两行,终止行号大于起始行号
for(int i = start + 1; i <= endX; ++i){
res.emplace_back(matrix[i][endY]);
}
}
if(endX > start && endY > start){//第三步是从右到左打印一行,存在第三步的前提是终止列数大于起始列数,终止行数大于起始行数
for(int i = endY-1; i >= start; --i){
res.emplace_back(matrix[endX][i]);
}
}
//第四步是从下到上打印一列:存在条件是至少有三行两列,即终止行号比起始行号至少大2
if(endX > start+1 && endY > start){
for(int i = endX-1; i > start; --i){
res.emplace_back(matrix[i][start]);
}
}
}
2.举例让抽象问题具体化
剑指 Offer 30. 包含min函数的栈
定义栈的数据结构,请在该类型中实现一个能够得到栈的最小元素的 min 函数在该栈中,调用 min、push 及 pop 的时间复杂度都是 O(1)。
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.min(); --> 返回 -3.
minStack.pop();
minStack.top(); --> 返回 0.
minStack.min(); --> 返回 -2.
来源: