目录
前言
本篇为大创团队的第二篇集体作品,针对物理光学的基础实验–牛顿环团队做出了探索和尝试。
一、牛顿环实验原理简介
1.现象介绍
牛顿环,又称"牛顿圈”。在光学上,牛顿环是一个薄膜干涉现象。光的一种干涉图样,是一些明暗相间的同心圆环。例如用一个曲率半径很大的凸透镜的凸面和一平面玻璃接触,在日光下或用白光照射时,可以看到接触点为一暗点,其周围为一些明暗相间的彩色圆环;而用单色光照射时,则表现为一些明暗相间的单色圆圈。这些圆圈的距离不等,随离中心点的距离的增加而逐渐变窄。它们是由球面上透射和平面上反射的光线相互干涉而形成的干涉条纹。牛顿环是典型的等厚薄膜干涉。同一半径的圆环处空气膜厚度相同,上、下表面反射光程差相同,因此使干涉图样呈圆环状。
2.公式推导
因,
R
2
=
(
R
−
e
)
2
+
r
k
2
R^2=(R-e)^2+r_k^2
R2=(R−e)2+rk2,因
e
≪
R
e\ll R
e≪R,忽略
e
2
e^2
e2项,近似得到
r
k
2
=
2
e
R
r_k^2=2eR
rk2=2eR,其中:
R
R
R为平凸透镜的曲率半径,
R
k
R_k
Rk为
K
K
K级圆环半径,
e
e
e为
K
K
K级圆环处空气层厚度。
根据干涉原理:1光和2光的光程差为
Δ
=
2
e
+
λ
2
\Delta=2e+\frac{\lambda}{2}
Δ=2e+2λ其中
λ
2
\frac{\lambda}{2}
2λ为光从平板玻璃表面反射时的半波损失.
明环:
Δ
=
k
λ
故
明
环
半
径
为
r
k
2
=
(
k
−
1
2
)
R
λ
\Delta=k\lambda \ \ 故明环半径为\ r_k^2=(k-\frac{1}{2})R\lambda
Δ=kλ 故明环半径为 rk2=(k−21)Rλ暗环:
Δ
=
(
2
k
+
1
)
λ
2
故
暗
环
半
径
为
r
k
2
=
k
R
λ
\Delta=(2k+1)\frac{\lambda}{2} \ \ 故暗环半径为\ r_k^2=kR\lambda
Δ=(2k+1)2λ 故暗环半径为 rk2=kRλ
想要计算曲率半径R也可以通过对牛顿环纹样的测量和计算获得。这里利用暗环半径进行测算。
r
k
2
=
k
R
λ
r
k
+
m
2
=
(
k
+
m
)
R
λ
r_k^2=kR\lambda\ \ \ r_{k+m}^2=(k+m)R\lambda
rk2=kRλ rk+m2=(k+m)Rλ
R
=
r
k
+
m
2
−
r
k
2
m
λ
R=\frac{r_{k+m}^2-r_k^2}{m\lambda}
R=mλrk+m2−rk2
3.特点总结
对于反射型的牛顿环:
1.中心为暗纹(半波损失)
2.平凸透镜向上移动,条纹向内收缩。平凸透镜向下移动,条纹向外扩张。
而透射型的牛顿环主要是由直接投射的那束光和经过反射以后再透射的光干涉形成的,在观察反射光牛顿环的反面观察即可。
透射型和反射型对比来看:
1.明、暗条纹互补,即,对调,其中反射型牛顿环中心是暗斑,透射型中心则为亮斑。
2.反射型牛顿环的反差比较大,容易观察,透射型的反差小,观察困难。
二、Virtualab仿真
1.搭建光路
首先,新建一个空的文件,在其添加一个平面波。
双击进入属性面板,设置平面波的属性(下图的直径、形状,右图的单一波长或多波长等)。
此后添加透镜系统构成牛顿环,在搜索框中找到Lens System拖动至面板中。
双击打开后设置透镜,选择需要的透镜形状拖入灰色区域。为了搭建出牛顿环的模型,我们依次拖入平面、锥面(就是球面)、平面、平面。
点击小铅笔图标1编辑透镜的大小、形状等参数,图标2编辑材料属性。
如上是针对平面的设置。
当选择的是圆锥面透镜,可编辑曲率半径,负数为向右凸,正数为向左凸。
接下来点击图标2修改材料,材料可选择已有的或根据需求自行导入,本次实验只使用了air和fused silica两种介质。
为了搭建牛顿环模型,我们对平面1和平面3后都使用fused silica材料,对球面2和球面4后使用air材料。
此外,可在此设置每个界面间的距离
借助上图的预览区检查一下设置是否正确。
完成以上设置后,需要调整牛顿环和波源的距离。
2.通道设置
(序列建模对于透镜较多的实验较为复杂,因此在软件中对于光线的路径用“+/-”进行定义(光轴正方向为+),“+/+”表示入射光线向右,并且穿过界面后继续向右,“+/-”表示向右入射,经界面反射向左,以此类推。)
用牛顿环做反射实验时,需要设置通道
注:此前需要在Optical Setup中将预先设定改为人为设置,否则无法激活通道设置的勾选框。
用牛顿环做反射实验时通道设置如下:
3.探测器与编辑窗的设置
完成上述工作后,添加Camera Detector并调节位置。
并且设置窗口大小(1)和采样点(2)。
设置完成后,由于反射实验我们需要设置探测器只探测反射光线,如图编辑窗内对探测器选择“R”。
我们选择Field Tracing,即可观察结果。
4.透射型牛顿环
若要完成牛顿环透射实验,我们需在牛顿环中透镜的通道稍作调整。
并且在探测器中改为探测透射光即可,如图选择“T”。
得到结果:
(注:在结果图出来后我们可以选择真实颜色或是伪彩色)伪彩色更容易清晰地观察。
至此仿真结束。
三、7.6.1.18版本的操作区别
牛顿环实验中如果我们用市面上流行的另一个版本,7.6.1.18版本,与试用版设置差异如下:
1 元器件选择
搭建光路的时候选择Optical Interface Sequence 而非试用版的lens system
具体可以参考专栏VirtualLab初学者教程-4.做一个透镜
2 通道激活,如果想要设置OIS器件,跟试用版不同,我们在这里激活。(此时你的仿真引擎除了经典场追迹都是可以看到非序列追迹的选项)
需要激活Non-Sequential Trace(选择Ture)
3 通道设置选项
通道设置选项为Propagation Channels。这里只是名称不同,设置内容同试用版。
其他设置与试用版基本一致,下面展示运行结果。
四、结果展示
在现有的基础实验仿真后,我们可以对参数进行调整,观察牛顿环的动态变化情况。
1、修改e空气层厚度
使用parameter run的功能,修改间距,运行过后可以得到这样的实验结果。
距离增大,此时平凸透镜上移,空气层厚度增加,而条纹要维持自己的级数,也就是保持和原来一样的光程差,因此向中间空气层厚度小的地方移动,条纹向中心收缩,也就是我们看到的圆环吞入现象。
2、修改R曲率半径
接着,依旧是使用parameter run,我们改变曲率半径。
经过运行,可以得到这样的动态图像。
R
=
r
k
+
m
2
−
r
k
2
m
λ
R=\frac{r_{k+m}^2-r_k^2}{m\lambda}
R=mλrk+m2−rk2由前验的理论知识可以得到,其他条件保持不变的情况下,若球面透镜的曲率半径减小,牛顿环的间距减小。
3、改变波长 λ \lambda λ
其次,我们改变光的波长,经过同样的操作,再次进行动态仿真的观察。
运行,得到动态仿真结果如下:
原理与改变曲率半径类似,由公式不难推出,当其他条件保持不变时,增大光的波长,牛顿环的间距将增大。
4、白光仿真
接下来我们进行白光光谱的牛顿环仿真。
在菜单栏的sources里点击Black Body Spectrum。
在此处可以改变温度,波长,采样数等来生成一个特定色温的黑体光谱。此处,我们选择5500K。
点击建模中的高斯波,将此处的类型改为List of Wavelengths。
点击Load From Diagram,在此处导入刚刚生成的黑体光谱。随后进行运行仿真。
可以得到如图的牛顿环仿真图样。(这也是一个反射型的牛顿环图样)
用Parameter run再次仿真,改变透镜与平行平板之间的距离,即可得到不同距离下的彩色牛顿环变化动画,也与理论相吻合。
PS:团队当时对parameter run里的范围没有设好,设的大了,改变透镜与平行平板之间的距离应该在波长量级的范围内,否则会有些许视觉上的错位,若范围过大甚至可能得到观察错误的实验现象,这时并不是说整个光路的搭建有错,而是说在动态范围中的变化过快,人眼可能更容易捕捉到亮光的出现,从而不能观察到吞入。
PPS:但是白光的parameter run需要过大的算力,计算机跑一次仿真时间太长,就没有再做一张效果更好的。
至此,牛顿环的实验仿真完成。
附
本篇由大创团队成员:唐艺恒、扶杨玉、黄一诺、李思潼、明玥共同完成。
本篇采用市面上流通比较广的试用版和7.6.1.18版本进行实验和演示,增强了适用性。
牛顿环实验也是非常经典而且有趣的实验,借助仿真图可以更好地理解理论知识。