本地部署Qwen2.5 Coder模型+自建API调用接口

Qwen 2.5 Coder模型部署与应用

1. Qwen 2.5 Coder:你的AI编程闺蜜

各位码农们,准备好迎接你的新编程伙伴了吗?Qwen 2.5 Coder来了!这个由阿里巴巴达摩院精心打造的AI编程助手,不仅能帮你生成代码,还能查漏补缺、推理如流。它就像是你的编程闺蜜,懂你、懂代码,还不会嫌弃你的咖啡口气。
Qwen 2.5 Coder

1.1 Qwen 2.5 Coder的超能力

  1. 多语言支持: Qwen 2.5 Coder支持40多种编程语言。无论你是Python狂热粉,还是JavaScript痴迷者,它都能陪你玩得飞起。
    图片a

  2. 代码生成: 只需给它一个简单的提示,它就能为你生成完整的函数、类,甚至是整个程序。就像是给了魔法师一根魔杖,然后 - 嘣!代码就出来了。

  3. 代码补全: 写到一半卡壳了?别担心,Qwen 2.5 Coder会接着你的思路往下写。它就像是能读懂你心思的编程通灵师。

  4. 代码修复: 发现bug了但不知道怎么修?Qwen 2.5 Coder可以帮你诊断问题并提供修复方案。它就是你的私人代码医生。
    图片b

  5. 代码解释: 看不懂别人的代码?让Qwen 2.5 Coder为你解释。它就像是代码世界的翻译官,能把晦涩难懂的代码翻译成人话。
    图片c

1.2 为什么选择Qwen 2.5 Coder?

  1. 性能卓越: 在多个代码生成基准测试中,Qwen 2.5 Coder的表现可以用"秒杀"来形容。它不仅能写代码,还能写得又快又好。
    对比a

  2. 持续学习: Qwen 2.5 Coder不断学习最新的编程技术和最佳实践。用它就像每天都有一个最新版的编程百科全书。

  3. 开源免费: 是的,你没看错。这么厉害的AI助手,竟然是开源免费的。这大概是程序员界最好的免费午餐了。

好了,介绍完Qwen 2.5 Coder的超能力,我们该开始正式的部署之旅了。系好安全带,准备好你的键盘和咖啡,让我们开始部署吧。

2. 准备工作:给Qwen 2.5 Coder安个温馨小窝

在我们在部署过程之前,让我们先为Qwen 2.5 Coder准备一个舒适的环境。

2.1 硬件要求:不是所有的电脑都能驾驭这位大神

  • GPU: NVIDIA A100 40GB或更高。是的,Qwen喜欢豪华的"大床"。如果你只有一张普通的游戏显卡,可能会让Qwen睡得不太舒服。
  • CPU: 至少4核。Qwen不是很挑剔,但如果你给她一个双核处理器,她可能会觉得有点"喘不上气"。
  • 内存: 最少8GB,推荐16GB或更高。因为Qwen喜欢在内存里跳舞,给她足够的空间让她尽情舞动吧。

感谢Rainyun提供服务器支持
国内4H8G服务器低至45¥/月
Rainyun已有超过五年运营经验,超过30,000个网站在Rainyun运行KVM高配

2.2 软件环境:Qwen的口味有点挑

  • 操作系统: Ubuntu 20.04 LTS或更高版本。Windows用户别慌,虚拟机欢迎你。或者,你可以考虑给电脑装个双系统,让Qwen住在Ubuntu里。
  • Python: 3.8或更高版本。因为Qwen觉得3.7太"老气横秋"了。
  • CUDA: 11.3或更高版本。没错,就是那个让你的显卡燃起来的东西。
  • cuDNN: 与CUDA版本匹配的版本。就像袜子要配鞋子一样重要。

2.3 环境配置:给Qwen铺张温暖的小床

首先,让我们更新一下系统,就像给Qwen打扫房间一样:

 sudo apt update && sudo apt upgrade -ysudo apt update && sudo apt upgrade -y

接下来,安装必要的系统依赖,就像给Qwen准备生活必需品:

 sudo apt install -y build-essential cmake unzip pkg-configsudo apt install -y build-essential cmake unzip pkg-config
sudo apt install -y libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev
sudo apt install -y libjpeg-dev libpng-dev libtiff-dev
sudo apt install -y libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
sudo apt install -y libxvidcore-dev libx264-dev
sudo apt install -y libopenblas-dev libatlas-base-dev liblapack-dev gfortran
sudo apt install -y libhdf5-serial-dev
sudo apt install -y python3-dev python3-pip python3-venv

现在,让我们为Qwen创建一个舒适的小窝(虚拟环境):

 python3 -m venv qwen_envpython3 -m venv qwen_env
source qwen_env/bin/activate

安装PyTorch,就像给Qwen准备一张舒适的大床:

 pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113

最后,安装其他必要的Python库,就像给Qwen的房间添加家具:

 pip install transformers modelscope flask requests numpy scipypip install transformers modelscope flask requests numpy scipy

验证一下是否安装成功,就像检查Qwen是否睡得舒服:

 python -c "import torch; print(torch.cuda.is_available())"python -c "import torch; print(torch.cuda.is_available())"

如果输出为True,恭喜你!Qwen已经躺在舒适的小床上,准备大展身手了。

3. 迎接Qwen 2.5 Coder:把AI大神请回家

3.1 从Hugging Face接Qwen回家

首先,安装git-lfs,就像准备一辆豪华轿车去接Qwen:

 sudo apt-get install git-lfssudo apt-get install git-lfs

然后,克隆模型仓库,就像把Qwen接到你家门口:

 git lfs installgit lfs install
git clone https://huggingface.co/Qwen/Qwen2.5-Coder-7B

最后,在Python中加载模型,就像邀请Qwen进入你的代码世界:

 from transformers import AutoTokenizer, AutoModelForCausalLMfrom transformers import AutoTokenizer, AutoModelForCausalLM

model_path = "./Qwen2.5-Coder-7B"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path).to("cuda")

3.2 从ModelScope接Qwen回家

如果你更喜欢ModelScope,那就这样做:

 pip install modelscopepip install modelscope

然后在Python中加载模型:

 from modelscope.models import Modelfrom modelscope.models import Model

model = Model.from_pretrained("Qwen/Qwen2.5-Coder-7B", device_map="auto")

4. 让Qwen为你服务:搭建本地API

4.1 创建Flask应用:给Qwen一个舞台

首先,创建一个项目目录,就像给Qwen准备一个专属办公室:

 mkdir qwen_apimkdir qwen_api
cd qwen_api

然后,创建app.py文件,这就是Qwen的剧本:

 touch app.pytouch app.py

现在,用你最喜欢的文本编辑器(vim还是nano?别争了,选你顺手的就行)编辑app.py文件,添加以下内容:

 import osimport os
from flask import Flask, request
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值