Qwen 2.5 Coder模型部署与应用
1. Qwen 2.5 Coder:你的AI编程闺蜜
各位码农们,准备好迎接你的新编程伙伴了吗?Qwen 2.5 Coder来了!这个由阿里巴巴达摩院精心打造的AI编程助手,不仅能帮你生成代码,还能查漏补缺、推理如流。它就像是你的编程闺蜜,懂你、懂代码,还不会嫌弃你的咖啡口气。
1.1 Qwen 2.5 Coder的超能力
-
多语言支持: Qwen 2.5 Coder支持40多种编程语言。无论你是Python狂热粉,还是JavaScript痴迷者,它都能陪你玩得飞起。
-
代码生成: 只需给它一个简单的提示,它就能为你生成完整的函数、类,甚至是整个程序。就像是给了魔法师一根魔杖,然后 - 嘣!代码就出来了。
-
代码补全: 写到一半卡壳了?别担心,Qwen 2.5 Coder会接着你的思路往下写。它就像是能读懂你心思的编程通灵师。
-
代码修复: 发现bug了但不知道怎么修?Qwen 2.5 Coder可以帮你诊断问题并提供修复方案。它就是你的私人代码医生。
-
代码解释: 看不懂别人的代码?让Qwen 2.5 Coder为你解释。它就像是代码世界的翻译官,能把晦涩难懂的代码翻译成人话。
1.2 为什么选择Qwen 2.5 Coder?
-
性能卓越: 在多个代码生成基准测试中,Qwen 2.5 Coder的表现可以用"秒杀"来形容。它不仅能写代码,还能写得又快又好。
-
持续学习: Qwen 2.5 Coder不断学习最新的编程技术和最佳实践。用它就像每天都有一个最新版的编程百科全书。
-
开源免费: 是的,你没看错。这么厉害的AI助手,竟然是开源免费的。这大概是程序员界最好的免费午餐了。
好了,介绍完Qwen 2.5 Coder的超能力,我们该开始正式的部署之旅了。系好安全带,准备好你的键盘和咖啡,让我们开始部署吧。
2. 准备工作:给Qwen 2.5 Coder安个温馨小窝
在我们在部署过程之前,让我们先为Qwen 2.5 Coder准备一个舒适的环境。
2.1 硬件要求:不是所有的电脑都能驾驭这位大神
- GPU: NVIDIA A100 40GB或更高。是的,Qwen喜欢豪华的"大床"。如果你只有一张普通的游戏显卡,可能会让Qwen睡得不太舒服。
- CPU: 至少4核。Qwen不是很挑剔,但如果你给她一个双核处理器,她可能会觉得有点"喘不上气"。
- 内存: 最少8GB,推荐16GB或更高。因为Qwen喜欢在内存里跳舞,给她足够的空间让她尽情舞动吧。
感谢Rainyun提供服务器支持
国内4H8G服务器低至45¥/月
Rainyun已有超过五年运营经验,超过30,000个网站在Rainyun运行
2.2 软件环境:Qwen的口味有点挑
- 操作系统: Ubuntu 20.04 LTS或更高版本。Windows用户别慌,虚拟机欢迎你。或者,你可以考虑给电脑装个双系统,让Qwen住在Ubuntu里。
- Python: 3.8或更高版本。因为Qwen觉得3.7太"老气横秋"了。
- CUDA: 11.3或更高版本。没错,就是那个让你的显卡燃起来的东西。
- cuDNN: 与CUDA版本匹配的版本。就像袜子要配鞋子一样重要。
2.3 环境配置:给Qwen铺张温暖的小床
首先,让我们更新一下系统,就像给Qwen打扫房间一样:
sudo apt update && sudo apt upgrade -ysudo apt update && sudo apt upgrade -y
接下来,安装必要的系统依赖,就像给Qwen准备生活必需品:
sudo apt install -y build-essential cmake unzip pkg-configsudo apt install -y build-essential cmake unzip pkg-config
sudo apt install -y libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev
sudo apt install -y libjpeg-dev libpng-dev libtiff-dev
sudo apt install -y libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
sudo apt install -y libxvidcore-dev libx264-dev
sudo apt install -y libopenblas-dev libatlas-base-dev liblapack-dev gfortran
sudo apt install -y libhdf5-serial-dev
sudo apt install -y python3-dev python3-pip python3-venv
现在,让我们为Qwen创建一个舒适的小窝(虚拟环境):
python3 -m venv qwen_envpython3 -m venv qwen_env
source qwen_env/bin/activate
安装PyTorch,就像给Qwen准备一张舒适的大床:
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
最后,安装其他必要的Python库,就像给Qwen的房间添加家具:
pip install transformers modelscope flask requests numpy scipypip install transformers modelscope flask requests numpy scipy
验证一下是否安装成功,就像检查Qwen是否睡得舒服:
python -c "import torch; print(torch.cuda.is_available())"python -c "import torch; print(torch.cuda.is_available())"
如果输出为True,恭喜你!Qwen已经躺在舒适的小床上,准备大展身手了。
3. 迎接Qwen 2.5 Coder:把AI大神请回家
3.1 从Hugging Face接Qwen回家
首先,安装git-lfs,就像准备一辆豪华轿车去接Qwen:
sudo apt-get install git-lfssudo apt-get install git-lfs
然后,克隆模型仓库,就像把Qwen接到你家门口:
git lfs installgit lfs install
git clone https://huggingface.co/Qwen/Qwen2.5-Coder-7B
最后,在Python中加载模型,就像邀请Qwen进入你的代码世界:
from transformers import AutoTokenizer, AutoModelForCausalLMfrom transformers import AutoTokenizer, AutoModelForCausalLM
model_path = "./Qwen2.5-Coder-7B"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path).to("cuda")
3.2 从ModelScope接Qwen回家
如果你更喜欢ModelScope,那就这样做:
pip install modelscopepip install modelscope
然后在Python中加载模型:
from modelscope.models import Modelfrom modelscope.models import Model
model = Model.from_pretrained("Qwen/Qwen2.5-Coder-7B", device_map="auto")
4. 让Qwen为你服务:搭建本地API
4.1 创建Flask应用:给Qwen一个舞台
首先,创建一个项目目录,就像给Qwen准备一个专属办公室:
mkdir qwen_apimkdir qwen_api
cd qwen_api
然后,创建app.py
文件,这就是Qwen的剧本:
touch app.pytouch app.py
现在,用你最喜欢的文本编辑器(vim还是nano?别争了,选你顺手的就行)编辑app.py
文件,添加以下内容:
import osimport os
from flask import Flask, request