Google C++每周贴士 #147: 负责任地使用穷举`switch`

正确使用穷举switch:避免枚举值陷阱与维护问题
这篇博客讨论了在C++中使用穷举switch语句处理枚举类型时应注意的事项。文章指出,虽然穷举switch能确保编译时枚举值的完整性,但必须处理非枚举值的情况,以及考虑未来枚举值的扩展。建议在enum的所有者保证不添加新枚举值或有能力修复代码的情况下使用此方法,并在switch语句中添加注释以说明策略。同时,文章还提醒了protobuf枚举处理的特殊性以及对enumclass的处理。

(原文链接:https://abseil.io/tips/147 译者:clangpp@gmail.com)

每周贴士 #147: 负责任地使用穷举switch

介绍

指定了编译选项-Werror以后,在switch一个enum类型数值的语句里,如果某个enum的枚举值没有对应的case,且没有default标签,那么编译就会失败。这通常被称作 穷举 或者 无默认值(defaultless)switch语句。

穷举switch语句提供了一个绝好的概念,以在编译期确保枚举类型的每个枚举值都被显式地处理了。然而,我们必须确保处理了落空(fall-through)的情况:变量(合法地)含有一个非枚举值,且要保证以下情况满足其一:

  1. enum的所有者保证没有新的枚举值会被添加,
  2. 在新的枚举值被添加的时候,enum的所有者有意愿且有能力修好我们的代码(例如,enum的定义是同一个项目的一部分),
  3. enum的所有者不会被我们的构建破坏所影响(例如,其代码在另一个代码控制仓库中),而且我们愿意在更新到enum所有者最新版本代码的时候强制更新我们的switch语句。

最初的尝试

设想我们在写一个函数来把每个枚举值映射为一个std::string。我们决定使用穷举switch语句以确保不会忘记处理任意一个枚举值:

std::string AnEnumToString(AnEnum an_enum) {
  switch (an_enum) {
    case kFoo:
      return "kFoo";
    case kBar:
      return "kBar";
    case kBaz:
      return "kBaz";
  }
}

假设AnEnum确实只有三个枚举值,这段代码能够编译,并且看起来有预期的功能。然而,有两个重要的问题需要加以说明。

含有非枚举值的枚举类型

C++中,枚举类型被允许承载除显式声明的枚举值以外的值。如果一个整数类型恰好有足够的比特位数以表达每一个枚举值,那么所有的枚举类型都至少可以合法地接受该整数类型能够表达的所有值;有确定底层实现类型(例如,声明为enum class)的枚举类型,可以接受该类型可以表达的所有值。有的时候这一点被有意地用来enum表达位域,或者用来表达编译代码时尚不存在的枚举值(如proto 3)。

那么,当an_enum不在我们处理的枚举值之中时会发生什么?

一般当switch语句没有case匹配switch的条件并且没有default分支的时候,代码会直接越过整个switch语句。这可能会导致意外的行为;在我们的例子中,它导致了未定义行为。在代码越过switch语句之后,它走到了函数结尾却没有返回一个值,这对于一个返回非空(non-void)类型的函数来说是未定义行为。

我们可以显式地处理代码越过switch语句的情况,以解决这个问题。这确保了我们在运行时总是得到定义好的、可预测的行为,并且继续受益于编译期检查,确保所有的枚举值都被显式地处理了。

在我们的例子中,我们将打印警告日志,然后返回一个哨兵值。另一个合理的选项,尤其是当我们确信该函数(现在)不能 接受一个非枚举值的时候,就是立即让程序崩溃(crash),并打印调试信息和堆栈信息,例如,用LOG(FATAL)

std::string AnEnumToString(AnEnum an_enum) {
  switch (an_enum) {
    case kFoo:
      return "kFoo";
    case kBar:
      return "kBar";
    case kBaz:
      return "kBaz";
  }
  std::cerr << "Unexpected value for AnEnum: " << an_enum;
  return kUnknownAnEnumString;
}

对于an_enum任何 可能的数值,现在代码都确保了提供合理的行为,但还有可能有个问题。

新的枚举值被添加时会发生什么?

假设有人稍后想添加一个新的枚举值到AnEnum里。这会导致AnEnumToString编译失败。这是缺陷还是特性取决于谁拥有AnEnum和它们提供了什么样的保证。

如果AnEnumAnEnumToString在同一项目中,那么添加新的枚举值的工程师在修好AnEnumToString的编译错误之前很可能没法提交代码。他很可能有意愿也有能力这么做。这种情况下使用穷举switch语句是好事:它成功地确保了switch语句被恰当地更新了,每个人都开心。

相似地,如果AnEnum另一个代码库 中的另一个项目的一部分,那这个破坏直到我们项目的工程师试图更新到新版本代码之前都不会浮现出来。如果我们期待那些工程师有意愿且有能力修好switch语句,那也还好。

然而,如果AnEnum属于 同一个代码库 中的另一个项目,那情况就更危险了。一个对AnEnum的修改可能导致我们的代码在最新版本被破坏,而且做出该修改的工程师也许没有意愿或没有能力帮我们修好。确实,如果有很多怼着AnEnum的穷举switch语句,那么把它们全修好可是个相当大的挑战。

因为这些原因,最好把穷举switch语句的使用场景限制在:要么我们拥有该enum类型,要么该类型的所有者显式地保证不会添加新的枚举值。

在我们的例子中,让我们假设AnEnum属于另一个项目,但是文档保证了不会有新的枚举值被添加。让我们添加一条注释,以便未来的读者理解我们的考量。

std::string AnEnumToString(AnEnum an_enum) {
  switch (an_enum) {
    case kFoo:
      return "kFoo";
    case kBar:
      return "kBar";
    case kBaz:
      return "kBaz";
    // 没有default。AnEnum的API保证了没有新的枚举值会被添加。
  }
  std::cerr << "Unexpected value for AnEnum: " << an_enum;
  return kUnknownAnEnumString;
}

结论

穷举switch语句可以是一个优秀的工具,确保所有的枚举值都被显式地处理了。为此要求我们:

  • 显式地处理enum含有非枚举值,因此跳出整个switch语句的情况。具体来说,如果其所在的函数有返回值,我们必须确保该函数要么仍然返回一个值,要么以良好定义的且可调试的方式崩溃。
  • 确保以下满足其一:
    • enum的所有者保证没有新的枚举值会被添加,
    • enum的所有者在添加新的枚举值的时候,有意愿且有能力修好我们的代码,
    • 如果我们的代码使用了穷举switch语句,并且被新添加的枚举值破坏了,owner的所有者不会因此而被阻碍其开发。

当把enum类型暴露给其他项目时,我们应该做到如下之一:

  • 显式地保证没有新的枚举值会被添加,因此用户可以受益于穷举switch语句。
  • 显式地保留未经通知而添加新的枚举值的权利,以阻止用户写穷举switch语句。一个惯用的方式是添加一个哨兵枚举值,且清楚地表明它不该被用于穷举switch语句;例如,kNotForUseWithExhaustiveSwitchStatements

常见问题

  • 为什么编译器允许在穷举switch之后省略return语句?

    如果有额外的步骤确保enum变量只能是其枚举值之一,那么省略最后的返回 可以 是安全的。在这种情况下,最好还是加一层保险,添加一个最终的returnLOG(FATAL),但是有足够多的祖传代码没这么写,所以google3的默认编译选项允许没有最终返回的代码编译。

  • 我要switch的枚举类型,已经到处都有穷举switch语句使用它了。既然其所有者已经事实上没法给它加新的枚举值了,我再多写一个穷举switch语句有什么关系?

    一般比起进一步增加维护者的负担,从所有者那儿拿到一个明确的策略会更好。

  • 那protobuf里的枚举呢?

    权威指导请参见protobuf文档

    在proto3的enum类型之上的穷举switch语句是不推荐的。解析器 保证enum字段会有枚举值。另外,在不引用特殊的(应该被视为protobuf工具内部实现细节的)哨兵枚举值的情况下,不可能写出针对proto3的enum类型的穷举switch语句。

    如果是你拥有的(或者其拥有者保证不会迁移到proto3,且不会添加新的枚举值的)proto2的enum类型,对其使用穷举switch语句是安全的,也是被protobuf团队推荐的。protobuf解析器保证enum字段会被赋予一个编译期的枚举值。不过还是要当心enum值不保证来自解析器的情况(例如,如果它是函数参数传进来的proto对象的一部分)。

  • 那限定枚举(enum class)呢?

    本贴士里所有的东西适用于截稿之时的C++的所有枚举类型(也就是说,至少到C++20)。

参考资料

内容概要:本文研究基于纳什博弈和交替方向乘子法(ADMM)的多微网主体能源共享模型,旨在实现多个微网之间的高效能源交互与优化调度。通过建立非合作博弈模型,各微网作为独立决策主体在满足自身需求的前提下追求成本最小化,利用ADMM算法实现分布式求解,确保隐私保护与计算效率。文中详细阐述了模型构建、博弈均衡分析、ADMM收敛性处理及仿真验证过程,并提供完整的Matlab代码实现,复现了SCI高水平论文的核心成果。; 适合人群:具备一定电力系统优化背景、博弈论基础知识及Matlab编程能力的研究生、科研人员或从事能源互联网、微电网调度相关工作的工程师;适合希望深入理解分布式优化算法在能源共享中应用的研究者。; 使用场景及目标:①掌握纳什博弈在多主体能源系统中的建模方法;②理解ADMM算法在分布式优化中的实现机制与收敛特性;③复现并拓展高水平SCI论文中的能源共享优化模型;④为微电网调度、能源市场机制设计等课题提供算法支持与代码参考。; 阅读建议:建议结合文档提供的Matlab代码逐段调试运行,深入理解变量设置、迭代流程与收敛判断逻辑;同时可延伸至其他分布式优化场景(如虚拟电厂、综合能源系统)进行模型迁移与改进。【SCI复现】基于纳什博弈和ADMM的多微网主体能源共享研究(Matlab代码实现)
内容概要:本文介绍了一种基于变分模态分解(VMD)与麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)相结合的多变量电力负荷预测模型,该模型通过Matlab代码实现。首先利用VMD对原始负荷数据进行分解,降低序列复杂度并提取不同频率特征;随后采用SSA优化LSSVM的关键参数,提升预测精度;最后将优化后的LSSVM用于各模态分量的预测并叠加得到最终负荷预测结果。该方法有效提高了负荷预测的准确性与稳定性,适用于多变量输入场景下的短期负荷预测任务。; 适合人群:具备一定电力系统背景和Matlab编程能力的高校研究生、科研【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现)人员及从事能源预测相关工作的工程技术人员;熟悉机器学习算法并希望将其应用于实际负荷预测问题的研究者。; 使用场景及目标:①解决传统负荷预测模型精度不足、易受噪声干扰的问题;②实现对多影响因素(如温度、历史负荷等)耦合作用下的电力负荷高精度预测;③为智能电网调度、能源管理及电力市场决策提供可靠的数据支撑; 阅读建议:建议读者结合提供的Matlab代码逐步复现整个预测流程,重点关注VMD参数设置、SSA优化机制与LSSVM建模环节,同时可尝试替换数据集或引入其他优化算法进行对比实验,以深入掌握该混合预测模型的设计思路与调参技巧。
内容概要:本文围绕无槽永磁电机的磁场解析问题展开,指出传统的原始场公式(RFF)在不同电机几何形状下可能引入显著误差,为此提出一种更为精确的解析解法,并通过Matlab代码实现验证。该方法旨在提高无槽永磁电机磁场计算的准确性,适用于需要高精度建模的研究与工程应用场景。文中还提及多个相关科研方向和技术实现,涵盖无人机仿真控制、电力系统优化、路径规划、新能源系统调度、负荷与可再生能源预测等多个前沿领域,均配有Matlab或Python代码实现支持。; 适合人群:具备一定电机理论基础和编程能力,从事电气工程、自动化、【无槽永磁电机解】磁场问题的直接场解,称为原始场公式(RFF),在整个无槽永磁电机领域中可能导致显著的误差,这些误差随着机器几何形状的变化而显著不同,提出了一种达到解析解(Matlab代码实现)新能源系统、智能控制等领域研究的科研人员及研究生;熟悉Matlab/Simulink或Python的开发人员。; 使用场景及目标:①改进无槽永磁电机磁场计算精度,替代存在误差的RFF方法;②为电机设计、控制系统仿真、高性能驱动开发提供可靠模型基础;③拓展至多物理场耦合分析与优化设计。; 阅读建议:建议结合提供的Matlab代码深入理解解析解的推导过程,对比RFF与新方法在不同几何参数下的误差表现,强化理论与实践结合;同时可参考文中列出的其他研究主题及相关代码资源,拓展科研思路与技术实现路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值