Pandas 文本数据方法 extract( ) extractall( )

Series.str.extract(pat, flags=0, expand=None)

参数:
pat : 字符串或正则表达式
flags : 整型,
expand : 布尔型,是否返回数据框
Returns:
数据框dataframe/索引index

Series.str.extractall(pat, flags=0)
参数:
pat : 字符串或正则表达式
flags : 整型
返回值:
DataFrame(数据框)

#如果提取的规则结果有多组,则会返回数据框,不匹配的返回NaN
In [32]: pd.Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)', expand=False)
Out[32]: 
     0    1
0    a    1
1    b    2
2  NaN  NaN
#注意正则表达式中的任何捕获组名称将用于列名,否则捕获的组名将被当作列名
In [33]: pd.Series(['a1', 'b2', 'c3']).str.extract('(?P<letter>[ab])(?P<digit>\d)', expand=False)
Out[33]: 
  letter digit
0      a     1
1      b     2
2    NaN   NaN
#参数expand=True在一组返回值的情况下,返回数据框
In [35]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=True)
Out[35]: 
     0
0    1
1    2
2  NaN
#参数expand=False在一组返回值的情况下,返回序列(Series)
In [36]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=False)
Out[36]: 
0      1
1      2
2    NaN
dtype: object
#参数expand=True作用在索引上时,一组数据返回数据框
In [37]: s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"])

In [38]: s
Out[38]: 
A11    a1
B22    b2
C33    c3
dtype: object

In [39]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)
Out[39]: 
  letter
0      A
1      B
2      C
#参数expand=False作用在索引上时,一组数据返回索引
In [40]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)
Out[40]: Index([u'A', u'B', u'C'], dtype='object', name=u'letter')
#下图表示了在expand=False时,各种情况下index,Series返回值的情况
         1 group    >1 group
Index      Index    ValueError
Series    Series    DataFrame
5.
#提取所有匹配的字符串
#extract只返回第一个匹配到的字符
In [42]: s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"])
In [43]: s
Out[43]: 
A    a1a2
B      b1
C      c1
dtype: object
In [44]: two_groups = '(?P<letter>[a-z])(?P<digit>[0-9])'
In [45]: s.str.extract(two_groups, expand=True)
Out[45]: 
  letter digit
A      a     1
B      b     1
C      c     1
#extractall将匹配所有返回的字符
In [46]: s.str.extractall(two_groups)
Out[46]: 
        letter digit
  match             
A 0          a     1
  1          a     2
B 0          b     1
C 0          c     1
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值