numpy
Claroja
这个作者很懒,什么都没留下…
展开
-
Numpy Binary operations
用来进行序列的 布尔值判断参考:https://numpy.org/doc/1.17/reference/routines.bitwise.html原创 2019-11-14 21:33:53 · 154 阅读 · 0 评论 -
numpy.argmax/argmin/max/min
查找数组最大值最小值,以及他们的索引。使用对象方法In [1]: import numpy as np ...: a=np.array([1,2,3,3,2,1])In [2]: a.max() Out[2]: 3In [3]: a.argmax() #返回第一个最大值的索引Out[3]: 2In [4]: a.min()Out[4]: 1In [5]: a.argmin() #返回第一原创 2017-07-19 10:49:02 · 1807 阅读 · 0 评论 -
Numpy 排序(sorting)、查询(searching)、计数(counting)
排序(Sorting) Function Describe sort(a[, axis, kind, order]) Return a sorted copy of an array. lexsort(keys[, axis]) Perform an indirect sort using a sequence of keys. argsort(a翻译 2017-05-23 09:05:40 · 998 阅读 · 0 评论 -
numpy random 模块
https://docs.scipy.org/doc/numpy/reference/routines.random.html 一下方法都要加np.random.前缀 注意生成的对象没有维度.既.shape属性,第二个数字是空.要用reshape来将它转换为多维度,这样才能像矩阵那样操作.1.简单随机数据 name describe rand(d0, d1, …,...翻译 2017-04-18 16:26:04 · 1164 阅读 · 0 评论 -
Numpy 索引
ndarrays可以使用x[start:stop:step]的语法. 注意在切片的时候,stop是不包含在内的import numpy as npdata=np.array([1,2,3,4])data[0]1data[1]2data[0:1]array([1])data[0:2]array([1, 2])data[1:2]array([2])索引子矩阵...原创 2017-06-01 17:00:56 · 635 阅读 · 0 评论 -
numpy ndarray 数组对象
https://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html注意arange等函数生成的对象没有维度.既.shape属性,第二个数字是空.要用reshape来将它转换为多维度,这样才能像矩阵那样操作.创建数组自动生成数组 name describe empty(shape[, dtype,...翻译 2017-04-26 16:52:31 · 2434 阅读 · 0 评论 -
numpy.std
标准差是衡量观测值相对平均值的分散程度。较大的标准差,说明观测数组的相对均值的波动比较大。 如果观测值是总体,标准差根号内除以n,如果是样本,标准差公式根号内除以n-1,因为我们大量接触的是样本所以基本都是除以n-1,除以的这个数字又叫做自由度。numpy.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=参数a : array_l原创 2017-08-07 13:57:07 · 2653 阅读 · 0 评论 -
NumPy 统计方法
https://docs.scipy.org/doc/numpy/reference/routines.statistics.html排序统计 方法 描述 amin(a[, axis, out, keepdims]) 返回最小值 amax(a[, axis, out, keepdims]) 返回最大值 nanmin(a[, axis, out,...翻译 2017-05-23 09:06:41 · 1912 阅读 · 0 评论 -
cov(m[, y, rowvar, bias, ddof, fweights, …])
In[2]: import numpy as npIn[3]: a=[1,2,3] ...: b=[3,2,1] ...: In[4]: np.cov(a,b)Out[4]: array([[ 1., -1.], [-1., 1.]])In[5]: c=list(zip(a,b)) ...: test = np.mat(c) ...: In[6]: np...原创 2018-05-02 18:17:24 · 734 阅读 · 0 评论 -
np.linalg 线性代数
np.linalg.det(a) #计算行列式 np.linalg.norm(a,ord=None) #范数 np.linalg.eig(a) #特征值和特征向量 np.linalg.inv(a) #逆矩阵原创 2018-05-03 11:36:02 · 263 阅读 · 0 评论 -
ndarray.ravel([order]) 和 ndarray.flatten([order])
返回一维数组>>>x = np.array([[1, 2], [3, 4]])>>> x.flatten()array([1, 2, 3, 4])>>> x.ravel()array([1, 2, 3, 4])原创 2018-04-28 15:36:08 · 270 阅读 · 0 评论 -
numpy 线性代数
矩阵与向量乘积 方法 描述 dot(a, b[, out]) Dot product of two arrays. linalg.multi_dot(arrays) Compute the dot product of two or more arrays in a single function call, while automatically sel...原创 2018-06-04 13:19:19 · 608 阅读 · 0 评论 -
Numpy 创建数组
创建数组 方法 描述 empty(shape[, dtype, order]) 根据指定的shape和dtype创建数组 empty_like(a[, dtype, order, subok]) 根据已知数组的shape和dtype创建数组 eye(N[, M, k, dtype, order]) 创建对角线为1的二维数组 identi...原创 2018-06-14 17:39:28 · 554 阅读 · 0 评论 -
numpy reshape
参考文献:https://www.cnblogs.com/onemorepoint/p/9099312.html原创 2018-10-26 13:00:37 · 257 阅读 · 1 评论 -
numpy where
import numpy as npa=np.array([0,2,4,6])np.where(a>0)Out[2]: (array([1, 2, 3], dtype=int64),)b=np.array([[1,2,3], [4,5,6]])np.where(b>3)Out[3]: (array([1, 1, 1], dtype=int64), a...原创 2019-04-09 17:21:25 · 156 阅读 · 0 评论 -
Numpy 数组操作
https://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html基础的操作 方法 描述 copyto(dst,?src[,?casting,?where]) 将一个数组的值拷贝到另一个数组改变数组型状 方法 描述 reshape(a, ...翻译 2017-05-23 09:06:11 · 5390 阅读 · 0 评论 -
npumpy.insert(arr, obj, values[, axis])
In [1]: import numpy as np ...: a=np.array([1,2,3,4,5])In [2]: np.insert(a,0,6) # 在插入的索引位置添加元素,其余元素后排Out[2]: array([6, 1, 2, 3, 4, 5])In [3]: np.insert(a,5,6) # 本来索引范围是0:4,所以要在最后一位插入需要最大的索引加1Out[3原创 2017-07-19 10:37:26 · 1256 阅读 · 0 评论 -
Numpy 数据精度
Data type Description bool_ Boolean (True or False) stored as a byte int_ Default integer type (same as C long normally either int64 or int32) intc Identical to C int (normally int32 or in翻译 2017-07-06 10:58:04 · 5427 阅读 · 0 评论 -
NumPy 数学函数
https://docs.scipy.org/doc/numpy/reference/routines.math.html三角函数(Trigonometric) Function Describe sin(x[, out]) 正弦值 cos(x[, out]) 余弦值 tan(x[, out]) 正切值 arcsin(x[, out...翻译 2017-05-23 09:05:16 · 5324 阅读 · 0 评论 -
Python numpy基础知识
1.基础知识 NumPy的主要对象是多维数组。它是由相同元素(通常是数字)组成的,通过正整数元组(tuple)作为索引的表格。 在数组中,纬度(dimensional)被称为轴(axis),轴的数量被称为级(rank),如下面这个数组,它有两个轴(axis),第一个纬度(dimension,或者称为轴axis)长度为2(既纵向),第二个纬度长度为三(既横向)。[[ 1., 0., 0.],[翻译 2017-04-18 15:42:59 · 4681 阅读 · 0 评论 -
numpy 算术运算(Arithmetic operations)
numpy算数运算函数 name descripe add(x1, x2[, out]) Add arguments element-wise. reciprocal(x[, out]) Return the reciprocal of the argument, element-wise. negative(x[, out]) Numerical negative,翻译 2017-04-20 11:10:43 · 6898 阅读 · 0 评论 -
numpy 删除元素
import numpy as npa=np.array([1,2,3])np.delete(a,1,axis=0)array([1, 3])二维数组如何删除指定元素?原创 2017-06-01 15:08:06 · 44985 阅读 · 1 评论 -
numpy matrix 矩阵对象
https://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html#numpy.matrix 1.简介 Matrix类型继承于ndarray类型,因此含有ndarray的所有数据属性和方法。Matrix类型与ndarray类型有六个重要的不同点,当你当Matrix对象当arrays操作时,这些不同点会导致非预期的结果。...翻译 2017-04-26 16:52:04 · 1635 阅读 · 0 评论 -
ndarray.reshape
import numpy as np a=np.array(range(1,21)) a=a.repeat(6) #repeat(a, repeats[, axis]) print(a)[ 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6原创 2017-06-06 11:01:43 · 3605 阅读 · 0 评论 -
numpy 创建数组
创建一维数组,full()的第一位是intnp.full(3,None)array([ nan, nan, nan])创建多维数组,full()的第一位是tuplenp.full((3,3),None)array([[ nan, nan, nan], [ nan, nan, nan], [ nan, nan, nan]])原创 2017-06-01 17:29:28 · 622 阅读 · 0 评论 -
函数编程(Functional programming)
函数 描述 apply_along_axis(func1d, axis, arr, *args, …) Apply a function to 1-D slices along the given axis. apply_over_axes(func, a, axes) Apply a function repeatedly over multiple axes. vector翻译 2017-06-06 13:37:10 · 641 阅读 · 0 评论 -
Numpy Chararray对象
创建chararray对象>>> charar = np.chararray((3, 3))>>> charar[:] = 'a'>>> chararchararray([['a', 'a', 'a'], ['a', 'a', 'a'], ['a', 'a', 'a']], dtype='|S1')属性 属性 描述 T Same as se翻译 2017-06-06 14:56:47 · 3850 阅读 · 0 评论 -
numpy.core.defchararray.join
In [1]: import numpy as np ...: a=np.array([1,2,3,4,5,6]).reshape(2,3).astype("str") ...: aOut[1]: array([['1', '2', '3'], ['4', '5', '6']], dtype='<U11')# 使用"."连接a[0]行In [2]: "原创 2017-06-06 15:08:07 · 1052 阅读 · 0 评论 -
Numpy 字符串处理
首先要先将数组转换为字符串 np.ndarray.astype(“str”)字符串操作 方法 描述 add(x1, x2) Return element-wise string concatenation for two arrays of str or unicode. multiply(a, i) Return (a * i), that is string multip翻译 2017-06-06 14:50:16 · 10410 阅读 · 0 评论 -
Numpy Scalars(标量)
在Python中只有一个整型和和一个浮点型的数据类型,而在NumPy中则由24种不同的数据类型. Booleans(布尔型) Type Remarks Character code bool_ compatible: Python bool ?’ bool8 8 bits Integers(整型) 类型 注释 字符串码 byte compati原创 2017-06-07 09:33:04 · 6425 阅读 · 0 评论 -
Numpy Statistics 统计函数
排序统计 方法 描述 amin(a[, axis, out, keepdims]) Return the minimum of an array or minimum along an axis. amax(a[, axis, out, keepdims]) Return the maximum of an array or maximum along an axis. n翻译 2017-07-05 14:48:01 · 1345 阅读 · 0 评论 -
Numpy Mathematical functions 数学函数
https://docs.scipy.org/doc/numpy/reference/routines.math.htmlTrigonometric functions(三角函数) 函数 描述 sin(x, /[, out, where, casting, order, …]) 正弦, element-wise. cos(x, /[, out, whe...翻译 2017-07-05 15:00:54 · 880 阅读 · 0 评论 -
numpy库
https://docs.scipy.org/doc/numpy/reference/routines.html入门numpy基础知识Numpy 索引NumPy 数据类型 Numpy 数据精度numpy对象numpy ndarray 数组对象Numpy chararray 数组对象numpy matrix 矩阵对象基本操作Numpy 排序(sor...原创 2017-04-26 16:51:19 · 1828 阅读 · 0 评论 -
ndarray对象
简介: NumPy提供了N维数组的类型,既ndarray。下面这张图展示了三个基本的来描述数组的对象:1)ndarray本身,2)描述特定大小数组的data-type对象,3)当获取元素时所返回的array-scalar对象。 ndarray(N-dimensional array)是相同类型,固定尺寸的元素的多维储存容器。由此我们可以 知道Numpy提供的ndarray容器有两个特点:翻译 2017-05-23 09:03:43 · 3184 阅读 · 0 评论