机器学习 线性回归

梯度下降实现线性回归
这里写图片描述
求导
这里写图片描述
最终算法:
这里写图片描述

多变量线性回归
基础知识
n 代表特征数量
x(i) x ( i ) 代表第i个训练实例,是特征矩阵中的第i行,是一个向量(vector)
x(i)j x j ( i ) 代表特征矩阵中第i行的第j个特征,也就是第i个训练实例的第j个特征.

多变量假设模型 hθ(x) h θ ( x )
这里写图片描述
也可以用向量表示为
这里写图片描述
代价函数为
这里写图片描述
优化目标
这里写图片描述
这里写图片描述

多项式回归*
线性回归并不适用于所有数据,有时需要用曲线来适应数据,比如:二次方或者三次方模型
这里写图片描述
另外我们也可以令 x2=x22,x3=x23 x 2 = x 2 2 , x 3 = x 3 2 将模型转换为线性模型.

正规方程
就只直接令代价函数为0,而不使用梯度下降方法来求代价函数的最小值.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值