梯度下降实现线性回归
求导
最终算法:
多变量线性回归
基础知识
n 代表特征数量
x(i)
x
(
i
)
代表第i个训练实例,是特征矩阵中的第i行,是一个向量(vector)
x(i)j
x
j
(
i
)
代表特征矩阵中第i行的第j个特征,也就是第i个训练实例的第j个特征.
多变量假设模型
hθ(x)
h
θ
(
x
)
也可以用向量表示为
代价函数为
优化目标
多项式回归*
线性回归并不适用于所有数据,有时需要用曲线来适应数据,比如:二次方或者三次方模型
另外我们也可以令
x2=x22,x3=x23
x
2
=
x
2
2
,
x
3
=
x
3
2
将模型转换为线性模型.
正规方程
就只直接令代价函数为0,而不使用梯度下降方法来求代价函数的最小值.