描述统计:
分析-描述统计,包括:频率,描述,搜索,交叉表,比率,P-P图,Q-Q图
1,频率:分析多个样本中取值的出现频次,求得这些频次的标准差,方差,偏度,峰度等等,可以绘制直方图,条形图,饼图,可以绘制参考正态分布
2,描述:以表格方式显示选中的样本数据的各种统计量,诸如标准差,方差,偏度,峰度等等
3,探索:可以设置多个因变量和一个因子进行分析,将会按照因子对数据进行分组分析,可以得到M估计,绘制直方图,茎叶图,已经绘制箱线图,箱线图能够显示出相应的异常值
4,交叉表:可以选择将样本作为行,列,得到的是频次的交叉表,可以选择进行卡方检验
5,比率:可以选择分子,分母样本,得到比率值的各种统计量,可以指定分组。
6,P-P图:可以选择样本,分析样本与某个分布的拟合程度,通过一个斜线45度参考线的散点来拟合,数据点越接近参考线,说明越匹配
7,Q-Q图:相比P-P图,参考线斜率不固定到45度
描述统计中提供的是对数据,数据频次,数据比率的统计量,以及数据分布方式等的计算功能。
比较均值:
分析-比较均值,包括:均值,单样本T检验,独立样本T检验,配对样本T检验,单因素ANOVA
1,均值:选择自变量和因变量,通过自变量对因变量进行分组,计算选中的一些均值,可以选择诸如最大,最小,均值,方差,标准差,偏度,峰度等等统计量。可以选择进行ANOVA和相关度检查
2,单样本T检验:得到样本的T检验值显著度,大于0.05说明原假设成立,即是样本的均值与总体均值一样
3,独立样本T检验:需要选择样本,再选择一个分组方法,将数据分成两组,最终得到的是不同分组的方差是否相等的检验假设显著度值。
4,配对样本T检验:需要选择成对的样本,将得到两个样本是否来自方差一致的总体的检验。通过它可以判断成对的样本所属总体是否存在一些差异。例如判断初生儿体重和二胎体重的均值是否一样
5,单因素ANOVA:即是单因素的方差分析,可以选择因变量,以及因子,通过因子对因变量的值进行检验,可以看到整体是否存在方差差异,也可以看到组间,两两分组间是否存在方差差异
比较均值中提供的是参数检验的相关方法,可以通过参数检验获知样本是否能够用于估计整体