1.什么是神经网络
图1 房价预测神经网络模型
在上图中,左边 size(房屋大小),bedrooms(卧室个数),zip code(房子的邮政编码,代表房子的地区),wealth(房子的富裕程度) 分别为参数x1,x2,x3,x4,为输入层。 中间三个圆圈是连接层 ,连接层的每个节点与每个输出层都有连接,所以被称为全连接(每个x值均会影响连接层的所有节点),三个连接层最后汇聚到一点,这个节点称为输出层。最终会输出我们需要得到房价预测结果y。这就是最基本的神经网络,把一个输入 x(此时x代表x1,x2,x3,x4) 和一个输出 y 相对应起来,就是监督学习。监督学习会自主调整连接层和输出层的节点,使给出的x更好地适应y。
2.神经网络的监督学习
结构化数据:类似于学习用户点击习惯推送对应广告,或者上节课中的房价预测,这些数据都是结构化数据(可以用表格之类的东西列出来)。可以用DNN(全连接深度神经网络)进行监督学习。
非结构化数据:类似于无人驾驶中识别其他车辆位置、语音识别等,均为非结构化数据(不能一一列出来的数据)。分别可以用CNN(卷积神经网络)和RNN(循环神经网络)实现
3.为什么神经网络比较流行了
1.数据量的暴增。过去10年 我们社会发生的事情是 对于非常多的问题 我们从只有相对来说少量的数据 到相对大量的数据 这些数据大多都是归功于社会的信息化 非常多的人类行为 已经被电子化和信息化 我们在电脑上、网站上、手机APP 花了大量的时间 这些在电子设备上的行为创造了数据 因为手机内置的相机 还有加速计 还有各种物理网中的感应器 这些东西的普及 我们已经收集了越来越多的数据
2.神经网络技术上的突破。数据是增加了,但是之前的神经网络在使用大量数据后预测效果并没有显著提高,好在是神经网络技术一直在高速发展,列如ReLU 替代sigmoid函数,会显著增加数据利用率和学习效率。
3.CPU和GPU的发展。如今的硬件处理能力是十几年前的几个数量级以上。