Spark-核心编程(五)RDD基本原理

Spark核心编程

RDD

RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是 Spark 中最基本的数据处理模型。代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合。

1、弹性:

​ 存储的弹性: 内存与磁盘的自动切换;

​ 容错的弹性: 数据丢失可以自动恢复;

​ 计算的弹性: 计算出错重试机制;

​ 分片的弹性: 可根据需要重新分片。

2、分布式: 数据存储在大数据集群不同节点上

3、数据集: RDD 封装了计算逻辑,并不保存数据

4、数据抽象: RDD 是一个抽象类,需要子类具体实现

5、不可变: RDD 封装了计算逻辑,是不可以改变的,想要改变,只能产生新的 RDD,在新的 RDD 里面封装计算逻辑

6、可分区、并行计算

基础编程

RDD序列化

闭包检查

从计算的角度, 算子以外的代码都是在 Driver 端执行, 算子里面的代码都是在 Executor端执行

那么在 scala 的函数式编程中,就会导致算子内经常会用到算子外的数据,这样就形成了闭包的效果,如果使用的算子外的数据无法序列化,就意味着无法传值给 Executor端执行,就会发生错误,所以需要在执行任务计算前,检测闭包内的对象是否可以进行序列化,这个操作我们称之为闭包检测。Scala2.12 版本后闭包编译方式发生了改变

object TestTransformForeach1 {

    def main(args: Array[String]): Unit = {
        val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("Operator")
        val sc = new SparkContext(sparkConf)


        val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))

        val user = new User

        // SparkException: Task not serializable
        // NotSerializableException: com.starnet.spark.core.rdd.action.TestTransformForeach1$User
        rdd.foreach(num => println("age is " + (user.age + num)))
        // RDD算子中传递的函数是会包含闭包操作的,那么就会进行检测功能
        // 闭包检测

        sc.stop()
    }

//    class User extends Serializable {
//        var age: Int = 30
//    }

    // 样例类在编译时,会自动混入序列化的特质(实现可序列化接口)
    case class User() {
        var age: Int = 30
    }
}

序列化方法和属性

从计算的角度, 算子以外的代码都是在 Driver 端执行, 算子里面的代码都是在 Executor端执行

object TestTransformSerial {

    def main(args: Array[String]): Unit = {
        val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("Operator")
        val sc = new SparkContext(sparkConf)

        val rdd: RDD[String] = sc.makeRDD(Array("hello world", "hello spark", "hadoop", "test"))

        val search = new Search("h")

        search.getMatch1(rdd).collect.foreach(println)
        search.getMatch2(rdd).collect.foreach(println)

        sc.stop()
    }

    // 查询对象
    // 类的构造参数其实就是类的属性
    // 构造参数需要进行闭包检测,其实就等同于类进行闭包检测
    class Search(query:String) extends Serializable {

        def isMatch(s: String): Boolean = {
            s.contains(query)
//            s.contains(this.query)
        }

        // 函数序列化案例
        def getMatch1 (rdd: RDD[String]): RDD[String] = {
            rdd.filter(isMatch)
        }

        // 属性序列化案例
        def getMatch2(rdd: RDD[String]): RDD[String] = {
            rdd.filter(_.contains(query))

            // 这样的话是不需要序列化的,因为s与Search没有关系了
            // val s = query
            // rdd.filter(_.contains(s))
        }
    }

}

Kryo 序列化框架

参考地址: https://github.com/EsotericSoftware/kryo

Java 的序列化能够序列化任何的类。但是比较重(字节多),序列化后,对象的提交也比较大。Spark 出于性能的考虑,Spark2.0 开始支持另外一种 Kryo 序列化机制。Kryo 速度是 Serializable 的 10 倍。

当 RDD 在 Shuffle 数据的时候,简单数据类型、数组和字符串类型已经在 Spark 内部使用 Kryo 来序列化,其他类型的数据还不能使用Kryo序列化。

想要使用 Kryo 序列化,也要继承 Serializable 接口。

RDD依赖关系

RDD血缘关系

RDD 只支持粗粒度转换,即在大量记录上执行的单个操作。将创建 RDD 的一系列 Lineage(血统)记录下来,以便恢复丢失的分区。RDD 的 Lineage 会记录 RDD 的元数据信息和转换行为,当该 RDD 的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。

相邻的两个RDD之间的关系称为依赖关系,即新的RDD依赖于旧的RDD

多个连续的RDD的依赖关系,称之为血缘关系

RDD是不会保存数据的,为了提高容错性,需要将每个RDD的关系保存下来(每个
RDD都会保存自己之前的血缘关系),一旦出现错误,可以根据血缘关系将数据源重新读取计算。

在这里插入图片描述

val lines: RDD[String] = sc.textFile("datas/spark-core/wordCount/1.txt")
println(lines.toDebugString)
println("11111111111111111")

val words: RDD[String] = lines.flatMap(_.split(" "))
println(words.toDebugString)
println("22222222222222222222")

val wordToOne: RDD[(String, Int)] = words.map(word => (word, 1))
println(wordToOne.toDebugString)
println("333333333333333333333")

val wordGroup: RDD[(String, Iterable[(String, Int)])] = wordToOne.groupBy(word => word._1)
println(wordGroup.toDebugString)
println("4444444444444444444")

val wordCount: RDD[(String, Int)] = wordGroup.map {
    case (word, list) => {
        val tuple = list.reduce((a, b) => {
            (word, a._2 + b._2)
        })
        tuple
    }
}

wordCount.collect.foreach(println)



// 结果如下:
(1) datas/spark-core/wordCount/1.txt MapPartitionsRDD[1] at textFile at TestLineAge.scala:13 []
 |  datas/spark-core/wordCount/1.txt HadoopRDD[0] at textFile at TestLineAge.scala:13 []
11111111111111111
(1) MapPartitionsRDD[2] at flatMap at TestLineAge.scala:17 []
 |  datas/spark-core/wordCount/1.txt MapPartitionsRDD[1] at textFile at TestLineAge.scala:13 []
 |  datas/spark-core/wordCount/1.txt HadoopRDD[0] at textFile at TestLineAge.scala:13 []
22222222222222222222
(1) MapPartitionsRDD[3] at map at TestLineAge.scala:21 []
 |  MapPartitionsRDD[2] at flatMap at TestLineAge.scala:17 []
 |  datas/spark-core/wordCount/1.txt MapPartitionsRDD[1] at textFile at TestLineAge.scala:13 []
 |  datas/spark-core/wordCount/1.txt HadoopRDD[0] at textFile at TestLineAge.scala:13 []
333333333333333333333
(1) ShuffledRDD[5] at groupBy at TestLineAge.scala:25 []
 +-(1) MapPartitionsRDD[4] at groupBy at TestLineAge.scala:25 []
    |  MapPartitionsRDD[3] at map at TestLineAge.scala:21 []
    |  MapPartitionsRDD[2] at flatMap at TestLineAge.scala:17 []
    |  datas/spark-core/wordCount/1.txt MapPartitionsRDD[1] at textFile at TestLineAge.scala:13 []
    |  datas/spark-core/wordCount/1.txt HadoopRDD[0] at textFile at TestLineAge.scala:13 []
4444444444444444444

RDD依赖关系

这里所谓的依赖关系,其实就是两个相邻 RDD 之间的关系

可以通过rdd.dependencies来获取RDD的依赖关系

val lines: RDD[String] = sc.textFile("datas/spark-core/wordCount/1.txt")
println(lines.dependencies)
println("11111111111111111")

val words: RDD[String] = lines.flatMap(_.split(" "))
println(words.dependencies)
println("22222222222222222222")

val wordToOne: RDD[(String, Int)] = words.map(word => (word, 1))
println(wordToOne.dependencies)
println("333333333333333333333")

val wordGroup: RDD[(String, Iterable[(String, Int)])] = wordToOne.groupBy(word => word._1)
println(wordGroup.dependencies)
println("4444444444444444444")

// 结果如下:
List(org.apache.spark.OneToOneDependency@4745e9c)
11111111111111111
List(org.apache.spark.OneToOneDependency@1981d861)
22222222222222222222
List(org.apache.spark.OneToOneDependency@6b1dc20f)
333333333333333333333
List(org.apache.spark.ShuffleDependency@507d64aa)
4444444444444444444

新的RDD的一个分区的数据依赖与旧的RDD的一个分区的数据,且各个分区一一对应依赖,称之为OneToOne依赖又称为窄依赖

新的RDD的一个分区的数据依赖与旧的RDD的多个分区的数据,称之为Shuffle依赖又称为宽依赖

RDD窄依赖

窄依赖表示每一个父(上游)RDD 的 Partition 最多被子(下游)RDD 的一个 Partition 使用,窄依赖我们形象的比喻为独生子女

class OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd)

RDD宽依赖

宽依赖表示同一个父(上游)RDD 的 Partition 被多个子(下游)RDD 的 Partition 依赖,会引起 Shuffle,总结:宽依赖我们形象的比喻为多生

class ShuffleDependency[K: ClassTag, V: ClassTag, C: ClassTag](
    @transient private val _rdd: RDD[_ <: Product2[K, V]],
    val partitioner: Partitioner,
    val serializer: Serializer = SparkEnv.get.serializer,
    val keyOrdering: Option[Ordering[K]] = None,
    val aggregator: Option[Aggregator[K, V, C]] = None,
    val mapSideCombine: Boolean = false)
extends Dependency[Product2[K, V]]
RDD阶段划分

DAG(Directed Acyclic Graph)有向无环图是由点和线组成的拓扑图形,该图形具有方向,不会闭环。例如,DAG 记录了 RDD 的转换过程和任务的阶段。

OneToOneDependency

在这里插入图片描述

ShuffleDependency

在这里插入图片描述

当RDD中存在shuffle依赖时,阶段会自动增加一个,

阶段数量 = shuffle依赖数量 + 1(因为默认就会有一个阶段,ResultStage阶段,它会在最后执行)

RDD任务划分

RDD 任务切分为 :Application、Job、Stage 和 Task

Application:初始化一个 SparkContext 即生成一个 Application;

Job:一个 Action(行动) 算子就会生成一个 Job;

Stage:Stage 等于宽依赖(ShuffleDependency)的个数加 1;

Task:一个 Stage 阶段中,最后一个 RDD 的分区个数就是 Task 的个数,一个Stage阶段中任务的数量 = 当前阶段中最后一个RDD的分区数量。

Application->Job->Stage->Task 每一层都是 1 对 n 的关系。

在ShuffleMapStage中的任务叫做ShuffleMapTask,ResultStage阶段的任务叫做ResultTask

RDD持久化

RDD中不保存数据的,如果一个RDD需要重复使用,那么需要从头再次执行来获取数据,RDD可以重用,但是数据无法重用。

RDD对象的持久化操作,不一定是为了重用,在数据执行较长,或数据比较重要的场合也可以采用持久化操作

object TestPersist {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("Persist")
        val sc = new SparkContext(sparkConf)

        val list = List("Hello Scala", "Hello Spark");

        val rdd: RDD[String] = sc.makeRDD(list)

        val flatRdd: RDD[String] = rdd.flatMap(_.split(" "))

        val mapRdd: RDD[(String, Int)] = flatRdd.map(word => {
            println("***********")
            (word, 1)
        })

        // 持久化操作
        // cache默认持久化的操作,只能将数据保存到内存中
        // 如果想要保存到磁盘文件,需要更改存储级别
        // 持久化操作必须在行动算子执行时完成的
        // persist保存的文件,在作业执行完成之后会自动删除
//        mapRdd.cache()
//        mapRdd.persist()

        // checkpoint需要落盘,需要执行检查点保存路径
        // checkpoint保存的文件,当作业执行完毕之后不会被删除
        // 一般保存路径都是在分布式存储系统:HDFS
        sc.setCheckpointDir("checkpoint") // 设置保存路径,这里是本地,实际使用HDFS
        mapRdd.checkpoint()

        val reduceRdd: RDD[(String, Int)] = mapRdd.reduceByKey(_ + _)

        reduceRdd.collect.foreach(println)

        println("=========================")

        val groupRDD: RDD[(String, Iterable[Int])] = mapRdd.groupByKey()

        groupRDD.collect.foreach(println)

        sc.stop()

        // 未持久化的结果:
//        ***********
//        ***********
//        ***********
//        ***********
//        (Hello,2)
//        (Spark,1)
//        (Scala,1)
//        =========================
//        ***********
//        ***********
//        ***********
//        ***********
//        (Hello,CompactBuffer(1, 1))
//        (Spark,CompactBuffer(1))
//        (Scala,CompactBuffer(1))

        // 持久化的结果
//        ***********
//        ***********
//        ***********
//        ***********
//        (Hello,2)
//        (Spark,1)
//        (Scala,1)
//        =========================
//        (Hello,CompactBuffer(1, 1))
//        (Spark,CompactBuffer(1))
//        (Scala,CompactBuffer(1))

    }
}

RDD Cache 缓存

RDD 通过 Cache 或者 Persist 方法将前面的计算结果缓存,默认情况下会把数据以缓存在 JVM 的堆内存中。但是并不是这两个方法被调用时立即缓存,而是触发后面的 action 算子时,该 RDD 将会被缓存在计算节点的内存中,并供后面重用。

存储级别

object StorageLevel {
    val NONE = new StorageLevel(false, false, false, false)
    val DISK_ONLY = new StorageLevel(true, false, false, false)
    val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
    val MEMORY_ONLY = new StorageLevel(false, true, false, true)
    val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
    val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
    val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
    val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
    val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
    val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
    val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
    val OFF_HEAP = new StorageLevel(true, true, true, false, 1)

在这里插入图片描述

缓存有可能丢失,或者存储于内存的数据由于内存不足而被删除,RDD 的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于 RDD 的一系列转换,丢失的数据会被重算,由于 RDD 的各个 Partition 是相对独立的,因此只需要计算丢失的部分即可,并不需要重算全部 Partition。

Spark 会自动对一些 Shuffle 操作的中间数据做持久化操作(比如:reduceByKey)。这样做的目的是为了当一个节点 Shuffle 失败了避免重新计算整个输入。但是,在实际使用的时候,如果想重用数据,仍然建议调用 persist 或 cache。

上面的DISK_2是副本的意思,表示两个副本,如果需要更多的副本,根据new StorageLevel(true, false, false, false, 2)自己去定义

object TestPersist {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("Persist")
        val sc = new SparkContext(sparkConf)

        val list = List("Hello Scala", "Hello Spark");

        val rdd: RDD[String] = sc.makeRDD(list)

        val flatRdd: RDD[String] = rdd.flatMap(_.split(" "))

        val mapRdd: RDD[(String, Int)] = flatRdd.map(word => {
            println("***********")
            (word, 1)
        })

        // 持久化操作
        // cache默认持久化的操作,只能将数据保存到内存中
        // 如果想要保存到磁盘文件,需要更改存储级别
        // 持久化操作必须在行动算子执行时完成的
        mapRdd.cache()
//        mapRdd.persist()

        val reduceRdd: RDD[(String, Int)] = mapRdd.reduceByKey(_ + _)

        reduceRdd.collect.foreach(println)

        println("=========================")

        val groupRDD: RDD[(String, Iterable[Int])] = mapRdd.groupByKey()

        groupRDD.collect.foreach(println)

        sc.stop()

        // 未持久化的结果:
//        ***********
//        ***********
//        ***********
//        ***********
//        (Hello,2)
//        (Spark,1)
//        (Scala,1)
//        =========================
//        ***********
//        ***********
//        ***********
//        ***********
//        (Hello,CompactBuffer(1, 1))
//        (Spark,CompactBuffer(1))
//        (Scala,CompactBuffer(1))

        // cache、persist以及cache+checkpoint持久化的结果
//        ***********
//        ***********
//        ***********
//        ***********
//        (Hello,2)
//        (Spark,1)
//        (Scala,1)
//        =========================
//        (Hello,CompactBuffer(1, 1))
//        (Spark,CompactBuffer(1))
//        (Scala,CompactBuffer(1))
        
        // 单独执行checkpoint持久化结果
//        ***********
//        ***********
//        ***********
//        ***********
//        ***********
//        ***********
//        ***********
//        ***********
//        (Hello,2)
//        (Spark,1)
//        (Scala,1)
//        =========================
//        (Hello,CompactBuffer(1, 1))
//        (Spark,CompactBuffer(1))
//        (Scala,CompactBuffer(1))
    }
}

RDD CheckPoint检查点

所谓的检查点其实就是通过将 RDD 中间结果写入磁盘

由于血缘依赖过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果检查点之后有节点出现问题,可以从检查点开始重做血缘,减少了开销。

对 RDD 进行 checkpoint 操作并不会马上被执行,必须执行 Action 操作才能触发。

缓存和检查点区别

1)Cache 缓存只是将数据保存起来,不切断血缘依赖。Checkpoint 检查点切断血缘依赖。

2)Cache 缓存的数据通常存储在磁盘、内存等地方,可靠性低。Checkpoint 的数据通常存储在 HDFS 等容错、高可用的文件系统,可靠性高。

3)建议对 checkpoint()的 RDD 使用 Cache 缓存,这样 checkpoint 的 job 只需从 Cache 缓存中读取数据即可,否则需要再从头计算一次 RDD。

cache:将数据临时存在内存中,进行数据的重用;会在血缘关系中增加新的依赖,一旦出现问题,可以重头读取数据。

persist:将数据临时存储在磁盘文件中,进行数据的重用,涉及到磁盘的IO,性能较低,但是数据安全,如果作业执行完毕,临时保存的数据会丢失;会在血缘关系中增加新的依赖,一旦出现问题,可以重头读取数据。

checkpoint:将数据长久性的保存在磁盘文件中,进行数据的重用,涉及到磁盘的IO,性能较低,但是数据安全;为了保证数据安全,所以一般情况下,会独立再执行一次作业,为了能够提高效率,一般情况下,是需要和cache联合使用;执行过程中会切换血缘关系,并重新建立新的血缘关系,checkpoint相当于改变了数据源。

RDD分区器

Spark 目前支持 Hash 分区和 Range 分区,和用户自定义分区。

Hash 分区为当前的默认分区。

分区器直接决定了 RDD 中分区的个数、RDD 中每条数据经过 Shuffle 后进入哪个分区,进而决定了 Reduce 的个数。

➢ 只有 Key-Value 类型的 RDD 才有分区器,非 Key-Value 类型的 RDD 分区的值是 None

➢ 每个 RDD 的分区 ID 范围:0 ~ (numPartitions - 1),决定这个值是属于那个分区的。

Hash 分区:对于给定的 key,计算其 hashCode,并除以分区个数取余

Range 分区:将一定范围内的数据映射到一个分区中,尽量保证每个分区数据均匀,而且分区间有序

自定义分区

object TestPartition {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local").setAppName("WordCount")
        val sc = new SparkContext(sparkConf)

        val rdd = sc.makeRDD(List(
            ("wei", "caocao"),
            ("shu", "liubei"),
            ("wu", "sunquan"),
            ("wei", "caopi"),
        ))

        rdd.partitionBy(new MyPartitioner(3)).saveAsTextFile("output")

        sc.stop()
    }

    /**
     * 自定义分区器
     * 1、继承Partitioner
     * 2、重写方法
     */
    class MyPartitioner(var num: Int) extends Partitioner{

        // 分区的数量
        override def numPartitions: Int = num

        // 根据数据的key值返回数据的分区索引,从0开始
        override def getPartition(key: Any): Int = {
            key match {
                case "wei" => 0
                case "shu" => 1
                case _ => 2
            }
        }
    }
}

// 结果如下
part-00000
(wei,caocao)
(wei,caopi)

part-00001
(shu,liubei)

part-00002
(wu,sunquan)
RDD文件读取与保存

Spark 的数据读取及数据保存可以从两个维度来作区分:文件格式以及文件系统。

文件格式分为:text 文件、csv 文件、sequence 文件以及 Object 文件;

文件系统分为:本地文件系统、HDFS、HBASE 以及数据库。

text 文件

// 读取输入文件
val inputRDD: RDD[String] = sc.textFile("input/1.txt")
// 保存数据
inputRDD.saveAsTextFile("output")

sequence 文件

SequenceFile 文件是 Hadoop 用来存储二进制形式的 key-value 对而设计的一种平面文件(FlatFile)。在 SparkContext 中,可以调用 sequenceFile[keyClass, valueClass](path)

// 保存数据为 SequenceFile
dataRDD.saveAsSequenceFile("output")
// 读取 SequenceFile 文件
sc.sequenceFile[Int,Int]("output").collect().foreach(println)

object 对象文件

对象文件是将对象序列化后保存的文件,采用 Java 的序列化机制。可以通过 objectFile[T:ClassTag](path)函数接收一个路径,读取对象文件,返回对应的 RDD,也可以通过调用saveAsObjectFile()实现对对象文件的输出。因为是序列化所以要指定类型。

// 保存数据
dataRDD.saveAsObjectFile("output")
// 读取数据
sc.objectFile[Int]("output").collect().foreach(println)
// 保存
val rdd: RDD[(String, Int)] = sc.makeRDD(List(
    ("a", 1),
    ("b", 2),
    ("c", 3),
    ("d", 4)
))

rdd.saveAsTextFile("output1")
rdd.saveAsObjectFile("output2")
rdd.saveAsSequenceFile("output3")

// 读取
println(sc.textFile("output1").collect.mkString(","))

println(sc.objectFile[(String, Int)]("output2").collect.mkString(","))

println(sc.sequenceFile[String, Int]("output3").collect.mkString(","))

//        (a,1),(b,2),(c,3),(d,4)
//        (a,1),(b,2),(c,3),(d,4)
//        (a,1),(b,2),(c,3),(d,4)
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Spark SQL是Spark中的一个模块,它提供了一种基于结构化数据的编程接口。Spark SQL支持多种数据源,包括Hive、JSON、Parquet等。Spark SQL的核心是DataFrame,它是一个分布式的数据集合,可以看作是一个表格,每一行都有相同的结构,可以进行类似于SQL的操作。 Spark SQL的基本使用包括创建DataFrame、注册表、执行SQL查询等。可以使用Spark SQL的API将MySQL、Hive等数据源中的数据转换为DataFrame,也可以使用Spark SQL的API将RDD转换为DataFrame。 具体使用方法如下: 1. 使用MySQL数据源创建DataFrame ```python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("mysql").getOrCreate() url = "jdbc:mysql://localhost:3306/test" table = "person" user = "root" password = "123456" df = spark.read.format("jdbc").option("url", url).option("dbtable", table).option("user", user).option("password", password).load() df.show() ``` 2. 使用Hive数据源创建DataFrame ```python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("hive").enableHiveSupport().getOrCreate() table = "person" df = spark.sql("select * from {}".format(table)) df.show() ``` 3. 将RDD转换为DataFrame ```python from pyspark.sql import SparkSession from pyspark.sql.types import StructType, StructField, StringType, IntegerType spark = SparkSession.builder.appName("rdd").getOrCreate() rdd = spark.sparkContext.parallelize([(1, "Alice"), (2, "Bob"), (3, "Charlie")]) schema = StructType([StructField("id", IntegerType(), True), StructField("name", StringType(), True)]) df = spark.createDataFrame(rdd, schema) df.show() ``` 以上就是Spark SQL的基本使用方法,可以根据具体需求进行相应的操作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值