36最长公共子序列
时间限制:3000 ms | 内存限制:65535 KB
难度:3、
描述
咱们就不拐弯抹角了,如题,需要你做的就是写一个程序,得出最长公共子序列。
tip:最长公共子序列也称作最长公共子串(不要求连续),英文缩写为LCS(Longest Common Subsequence)。其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列。
输入
第一行给出一个整数N(0<N<100)表示待测数据组数
接下来每组数据两行,分别为待测的两组字符串。每个字符串长度不大于1000.
输出
每组测试数据输出一个整数,表示最长公共子序列长度。每组结果占一行。
样例输入
2 asdf adfsd 123abc abc123abc
样例输出
3 6
代码:
#include<bits/stdc++.h>
using namespace std;
#define mian main
char s1[1010],s2[1010];
int dp[1010][1010];
int mian()
{
int t;
scanf("%d",&t);
while (t --)
{
scanf("%s %s",s1+1,s2+1);
int len1 = strlen(s1 + 1),len2 = strlen(s2 + 1);
for (int i = 1;i <= len1;i ++)
for (int j = 1;j <= len2;j ++)
if (s1[i] == s2[j])
dp[i][j] = dp[i-1][j-1] + 1;
else
dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
printf("%d\n",dp[len1][len2]);
}
return 0;
}
回文字符串
时间限制:3000 ms | 内存限制:65535 KB
难度:4
输入
第一行给出整数N(0<N<100)
接下来的N行,每行一个字符串,每个字符串长度不超过1000.
输出
每行输出所需添加的最少字符数
样例输入
1
Ab3bd
样例输出
2
描述
所谓回文字符串,就是一个字符串,从左到右读和从右到左读是完全一样的,比如"aba"。当然,我们给你的问题不会再简单到判断一个字符串是不是回文字符串。现在要求你,给你一个字符串,可在任意位置添加字符,最少再添加几个字符,可以使这个字符串成为回文字符串。
思路:
我们把原字符串翻转过来就得到了一个新的字符串,这样只需要求出与原字符串的最长公共子序列的长度z,再用字符串的长度减去这个值即可得出答案,我们用dp[ i ] [ j ]来表示截止到原字符串第 i - 1 新串第 j - 1 的最长公共子序列的长度
代码:
#include<bits/stdc++.h>
using namespace std;
char s[1010],s2[1010];
int dp[1010][1010];
int main()
{
int t;
scanf("%d",&t);
while (t --)
{
scanf("%s",s + 1);
int len = strlen(s + 1);
for (int i = len;i >= 0;i --)
s2[i] = s[len - i + 1];
for (int i = 1;i <= len;i ++)
{
for (int j = 1;j <= len;j ++)
{
if (s[i] == s2[j])
dp[i][j] = dp[i - 1][j - 1] + 1;
else
dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
}
}
printf("%d\n",len - dp[len][len]);
}
return 0;
}