[BZOJ1937][Shoi2004]Mst 最小生成树(KM)

211 篇文章 0 订阅
12 篇文章 0 订阅

题目描述

传送门
题目大意:一个无向图每一条边有边权,给出一棵生成树,求最小的修改边权的方案使这棵树是这个图的一个最小生成树。

题解

刚开始看到这道题是没大有思路的
首先将树边和非树边分开,每一条边看做一个点,然后枚举每一条树边,将树边的两个端点所确定的树链上所有大于这条非树边的边全部连向这条非树边,权值为边权的差值,然后做二分图的最大权值匹配
想出来这个做法了之后不会非常严格的证明,但是感觉首先每一条边只会被修改一次,并且能匹配的两条边任意修改一个就可以,然后只要修改掉一个最大的就行了,所以认为是对的
但是实际上有一种更科学的方法
KM算法有一个性质就是匹配的一条边的两个顶标之和大于等于边权,并且每一次修改的时候保证了顶标的变化量最小。这样的话恰好符合了最小生成树的性质:两条边的修改量大于等于边权,并且修改量最小
通过这道题还发现了一个问题是,在KM的过程中如果左边的点集大小大于右边的点集大小,那么应该在右边加上一些虚点,否则左边多出来的那些点永远无法匹配

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
using namespace std;
#define N 1005
#define inf 1000000000

int n,m,nn,mm,mak,ans;
int tot,point[N],nxt[N*2],v[N*2],id[N*2];
int father[N],h[N],last[N],num[N];
int e[N][N],ex[N],ey[N],visx[N],visy[N],linky[N],lak[N];
struct data
{
    int x,y,z;
    bool operator < (const data &a) const
    {
        return x<a.x||x==a.x&&y<a.y;
    }
}ed[N];
bool istree[N];
map <data,int> mp;

void add(int x,int y,int z)
{
    ++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y; id[tot]=z;
}
void dfs(int x,int fa)
{
    father[x]=fa;h[x]=h[fa]+1;
    for (int i=point[x];i;i=nxt[i])
        if (v[i]!=fa)
        {
            last[v[i]]=id[i];
            dfs(v[i],x);
        }
}
bool find(int x,int mak)
{
    visx[x]=mak;
    for (int i=1;i<=mm;++i)
        if (visy[i]!=mak)
        {
            int tmp=ex[x]+ey[i]-e[x][i];
            if (!tmp)
            {
                visy[i]=mak;
                if (linky[i]==-1||find(linky[i],mak))
                {
                    linky[i]=x;
                    return 1;
                }
            }
            else lak[i]=min(lak[i],tmp);
        }
    return 0;
}
int KM()
{
    for (int i=1;i<=nn;++i)
        for (int j=1;j<=mm;++j)
            ex[i]=max(ex[i],e[i][j]);
    memset(linky,-1,sizeof(linky));
    for (int i=1;i<=nn;++i)
    {
        for (int j=1;j<=mm;++j) lak[j]=inf;
        while (1)
        {
            ++mak;
            if (find(i,mak)) break;
            int tmp=inf;
            for (int k=1;k<=mm;++k)
                if (visy[k]!=mak) tmp=min(tmp,lak[k]);
            for (int k=1;k<=nn;++k)
                if (visx[k]==mak) ex[k]-=tmp;
            for (int k=1;k<=mm;++k)
                if (visy[k]==mak) ey[k]+=tmp;
                else lak[k]-=tmp;
        }
    }
    int sum=0;
    for (int i=1;i<=mm;++i)
        if (linky[i]!=-1)
            sum+=e[linky[i]][i];
    return sum;
}
int main()
{
    scanf("%d%d",&n,&m);
    for (int i=1;i<=m;++i)
    {
        int x,y,z;scanf("%d%d%d",&x,&y,&z);
        if (x>y) swap(x,y);
        ed[i].x=x,ed[i].y=y,ed[i].z=z;
        mp[ed[i]]=i;
    }
    for (int i=1;i<n;++i)
    {
        int x,y;scanf("%d%d",&x,&y);
        if (x>y) swap(x,y);
        data now=(data){x,y,0};
        int idnow=mp[now];
        ++nn;add(x,y,nn),add(y,x,nn);
        num[nn]=idnow;
        istree[idnow]=1;
    }
    dfs(1,0);
    for (int i=1;i<=m;++i)
        if (!istree[i])
        {
            int x=ed[i].x,y=ed[i].y,z=ed[i].z;
            ++mm;
            if (h[x]<h[y]) swap(x,y);
            while (h[x]>h[y])
            {
                if (ed[num[last[x]]].z>z)
                    e[last[x]][mm]=ed[num[last[x]]].z-z;
                x=father[x];
            }
            while (x!=y)
            {
                if (ed[num[last[x]]].z>z)
                    e[last[x]][mm]=ed[num[last[x]]].z-z;
                x=father[x];
                if (ed[num[last[y]]].z>z)
                    e[last[y]][mm]=ed[num[last[y]]].z-z;
                y=father[y];
            }
        }
    mm=max(nn,mm);
    ans=KM();
    printf("%d\n",ans);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值