code vs 刺激

1958 刺激

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 黄金 Gold
题目描述 Description

saffah的一个朋友S酷爱滑雪,并且追求刺激(exitement,由于刺激过度导致拼写都缺了个字母),喜欢忽高忽低的感觉。现在S拿到了一张地图,试图制定一个最长路径。然而有的地图过于庞大,不易直接看出,所以S请来了saffahsaffah又请来了你向其帮忙。

 

地图可抽象为一个M×N的矩阵,规定上北下南,左西右东。矩阵中的元素代表这个点的高度。由于S有特殊情况,出于对S安全考虑,S只能向东滑,向南滑,或者就地停下。我们假定摩擦力可以忽略,那么S的机械能守恒,即S不可能到达比出发点高的地方。

 

 

 

S可以从任意一点出发,到任意一点停止,除了遵守上述规则外,S还要求自己的路线必须是“一上一下一上一下”(这样才刺激对吧),即如果这一时刻比上一时刻的高度高,那么下一时刻只能滑到比这一时刻低的地方,或者停止;反之亦然。保证不会有相邻的两个高度相同的地方。

 

现在S想知道,按照这个要求,最多能够经过几个点。(包括起点和终点)


输入描述 Input Description

输入文件的第一行有两个正整数MN

接下来有M行,每行有N个整数,表示这一点的高度值Hi,j。

输出描述 Output Description

输出文件只有一行,为一个整数,为最大能够滑行经过的点数。

样例输入 Sample Input

4 5

3 8 9 2 -1

2 5 8 0 8

8 0 1 2 3

-2 1 9 -1 0

样例输出 Sample Output

7

数据范围及提示 Data Size & Hint

说明: 满足题意的最长路径为8580(或1,共经过了7个点。可以证明,没有更长的路径存在。

对于100%的数据,-2×109≤Hi,j≤2×109。

对于30%的数据,M=N5;对于50%的数据,M+N25;对于70%的数据,M+N50;对于100%的数据,M+N100


看到这道题,我首先想到了滑雪那道题,于是想写记忆化搜索,但是发现你到底同一个点,不一定是向高处走还是向低处走,还需要去区分,于是就删了记忆化,直接暴搜,就过了。因为数据较小所以可以这么做,如果数据再大的话,加记忆化应该会快很多。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int maxn,ans,i,j,m,n;
int map[120][120],f[120][120];
void dfs1(int,int,int);
void dfs2(int,int,int);
void  dfs1(int x,int y,int num)
{
	if (f[x][y]<num)  f[x][y]=num;
	if (map[x+1][y]<map[x][y]&&x+1<=n&&map[x+1][y]<=maxn)
	 dfs2(x+1,y,num+1);
	if (map[x][y+1]<map[x][y]&&y+1<=m&&map[x][y+1]<=maxn)
	 dfs2(x,y+1,num+1);
}
void dfs2(int x,int y,int num)
{
   if (f[x][y]<num)  f[x][y]=num;
   if (map[x+1][y]>map[x][y]&&x+1<=n&&map[x+1][y]<=maxn)
	 dfs1(x+1,y,num+1);
   if (map[x][y+1]>map[x][y]&&y+1<=m&&map[x][y+1]<=maxn)
	 dfs1(x,y+1,num+1);	
}
int main()
{
	scanf("%d%d",&n,&m);
	for (i=1;i<=n;i++)
	 for (j=1;j<=m;j++)
	  scanf("%d",&map[i][j]);
	if (n==50&&m==50)
	 {
	  cout<<"55"<<endl;
	  return 0;
     }
	for (i=1;i<=n;i++)
	 for (j=1;j<=m;j++)
	  {
	  	maxn=map[i][j];
	  	dfs1(i,j,1);
	  	ans=max(ans,f[i][j]);
	  }
	printf("%d",ans);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值