bzoj 1085 骑士精神

1085: [SCOI2005]骑士精神

Time Limit: 10 Sec   Memory Limit: 162 MB
Submit: 1461   Solved: 796
[ Submit][ Status][ Discuss]

Description

在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士, 且有一个空位。在任何时候一个骑士都能按照骑士的走法(它可以走到和它横坐标相差为1,纵坐标相差为2或者横坐标相差为2,纵坐标相差为1的格子)移动到空位上。 给定一个初始的棋盘,怎样才能经过移动变成如下目标棋盘: 为了体现出骑士精神,他们必须以最少的步数完成任务。

Input

第一行有一个正整数T(T<=10),表示一共有N组数据。接下来有T个5×5的矩阵,0表示白色骑士,1表示黑色骑士,*表示空位。两组数据之间没有空行。

Output

对于每组数据都输出一行。如果能在15步以内(包括15步)到达目标状态,则输出步数,否则输出-1。

Sample Input

2
10110
01*11
10111
01001
00000
01011
110*1
01110
01010
00100

Sample Output

7
-1

HINT

Source


题解:这道题如果直接爆搜会TLE,所以这里引入搜索家族的一个新成员A*,所谓A*就是启发式搜索,之所以称为启发式搜索,是因为他不是漫无目的搜索每一个状态,而是有目的性的进行搜索。启发式搜索的核心就是估价函数,估价函数就是对于当前状态预先估计一个到达目标状态的可能值。如果估价值偏小,那么有可能效率低下,如果估计值偏大,有可能遗失正确的答案,所以函数的构建才是关键,需要具体情况具体分析。
就这道题来说,他的估价函数值就是当前状态与目标状态不同位置的数目,如果要使其达到目标状态,至少需要这个数目的步数,如果这个步数都已经超过了限制的步数的话,那就没有再搜的必要了,这样就可以减少搜索的次数。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
int ans[10][10]={{1,1,1,1,1},{0,1,1,1,1},{0,0,2,1,1},{0,0,0,0,1},{0,0,0,0,0}};
int a[10][10];
int t,x,y,pd,k;
int xx[10]={1,1,-1,-1,2,2,-2,-2};
int yy[10]={2,-2,2,-2,1,-1,1,-1};
int eva(int s)
{
  int m=0;
  for (int i=0;i<5;i++)
   for (int j=0;j<5;j++)
     if (a[i][j]!=ans[i][j])
      {
      	m++; if(m+s>k)  return 0;
      }
  return 1;
}
int judge()
{
  for (int i=0;i<5;i++)
   for (int j=0;j<5;j++)
    if (ans[i][j]!=a[i][j])
     return 0;
  return 1;
}
void search(int s,int x,int y)
{
  if (s==k) {
  	 if (judge())  pd=1;
  	 return;
  }
  if (pd) return;
  for (int i=0;i<8;i++)
   {
   	int nowx=x+xx[i],nowy=y+yy[i];
   	if (nowx<0||nowx>4||nowy<0||nowy>4) continue;
	swap(a[x][y],a[nowx][nowy]);
	if (eva(s))  search(s+1,nowx,nowy);
	swap(a[x][y],a[nowx][nowy]); 
   } 
}
int main()
{
  freopen("a.in","r",stdin);
  freopen("my.out","w",stdout);
  scanf("%d",&t);
  for(int i=1;i<=t;i++)
   {
   	pd=0;
   	char s[10];
   	memset(a,0,sizeof(a));
   	for (int j=0;j<5;j++)
   	 {
   	    scanf("%s",s);
   	 	for (int l=0;l<5;l++)
   	 	 if (s[l]=='*')
   	 	  a[j][l]=2,x=j,y=l;
   	 	 else
   	 	  a[j][l]=s[l]-'0';
   	 }
   	for (k=1;k<=15;k++)
   	 {
   	 	search(0,x,y);
   	 	if (pd) { printf("%d\n",k);break;}
   	 }
   	if (!pd) printf("-1\n");
   } 
} 




  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值