1458: 士兵占领
Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 784 Solved: 458
[ Submit][ Status][ Discuss]
Description
有一个M * N的棋盘,有的格子是障碍。现在你要选择一些格子来放置一些士兵,一个格子里最多可以放置一个士兵,障碍格里不能放置士兵。我们称这些士兵占领了整个棋盘当满足第i行至少放置了Li个士兵, 第j列至少放置了Cj个士兵。现在你的任务是要求使用最少个数的士兵来占领整个棋盘。
Input
第一行两个数M, N, K分别表示棋盘的行数,列数以及障碍的个数。 第二行有M个数表示Li。 第三行有N个数表示Ci。 接下来有K行,每行两个数X, Y表示(X, Y)这个格子是障碍。
Output
输出一个数表示最少需要使用的士兵个数。如果无论放置多少个士兵都没有办法占领整个棋盘,输出”JIONG!” (不含引号)
Sample Input
4 4 4
1 1 1 1
0 1 0 3
1 4
2 2
3 3
4 3
1 1 1 1
0 1 0 3
1 4
2 2
3 3
4 3
Sample Output
4
数据范围
M, N <= 100, 0 <= K <= M * N
数据范围
M, N <= 100, 0 <= K <= M * N
HINT
Source
题解:由源点向所有可以放置士兵的位置连一条容量为2的边,再由每个位置向它所属的行和列的点连边容量为1,然后由所有的行和列向汇点连边,容量为该行(该列)所需的士兵个数。考虑为什么源点向放置士兵的位置连边为2?我是这么想的,因为一个位置不仅需要向他所在的列连边还需要向他所在的行连边,但是行和列是互不影响的,所以只能分别补充,因为补充的容量为1,所以每个点只能算一次。
虽然AC了,但是本人还是觉得不是很科学,看了看网上的标解:
觉得还是标解科学。。。。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
#define N 200000
#define M 1000000
using namespace std;
int n,m,k;
int tot=-1,l[120],h[120],a[120][120],deep[N];
int point[N],dis[N],can[N],laste[N],mincost,maxflow;
int next[M*2],v[M*2],remain[M*2],c[M*2],cur[N],num[N];
int fl[N],fh[N];
const int inf=1e9;
void add(int x,int y,int z)
{
tot++; next[tot]=point[x]; point[x]=tot; v[tot]=y; remain[tot]=z;
tot++; next[tot]=point[y]; point[y]=tot; v[tot]=x; remain[tot]=0;
}
int addflow(int s,int t)
{
int now=t; int ans=inf;
while (now!=s)
{
ans=min(ans,remain[laste[now]]);
now=v[laste[now]^1];
}
now=t;
while (now!=s)
{
remain[laste[now]]-=ans;
remain[laste[now]^1]+=ans;
now=v[laste[now]^1];
}
return ans;
}
void bfs(int s,int t)
{
for (int i=s;i<=t;i++) deep[i]=t+1;
deep[t]=0;
queue<int> p;p.push(t);
while (!p.empty())
{
int now=p.front(); p.pop();
for (int i=point[now];i!=-1;i=next[i])
if (deep[v[i]]==t+1&&remain[i^1])
deep[v[i]]=deep[now]+1,p.push(v[i]);
}
}
void isap(int s,int t)
{
for (int i=s;i<=t;i++) cur[i]=point[i];
for (int i=s;i<=t;i++) num[deep[i]]++;
bfs(s,t); int now=s;
while (deep[s]<=t)
{
if (now==t)
{
maxflow+=addflow(s,t);
now=s;
}
bool f=false;
for (int i=cur[now];i!=-1;i=next[i])
{
if (deep[v[i]]+1==deep[now]&&remain[i])
{
laste[v[i]]=i;
f=true;
cur[now]=i;
now=v[i];
break;
}
}
if (!f)
{
int minn=t;
for (int i=point[now];i!=-1;i=next[i])
if (remain[i]) minn=min(minn,deep[v[i]]);
if (!--num[deep[now]]) break;
deep[now]=minn+1;
num[deep[now]]++;
cur[now]=point[now];
if (now!=s)
now=v[laste[now]^1];
}
}
}
int main()
{
memset(point,-1,sizeof(point));
memset(next,-1,sizeof(next));
scanf("%d%d%d",&n,&m,&k);
int sum=0;
for (int i=1;i<=n;i++)
scanf("%d",&l[i]),sum+=l[i];
for (int i=1;i<=m;i++)
scanf("%d",&h[i]),sum+=h[i];
for (int i=1;i<=k;i++)
{
int x,y; scanf("%d%d",&x,&y);
a[x][y]=1;
}
int num=n*m;
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
if (!a[i][j])
{
int x=(i-1)*m+j;
add(0,x,2);
add(x,num+i,1);
add(x,num+n+j,1);
fl[i]++;
fh[j]++;
}
for (int i=1;i<=n;i++)
if (fl[i]<l[i])
{
printf("JIONG!\n");
return 0;
}
for (int i=1;i<=m;i++)
if (fh[i]<h[i])
{
printf("JIONG!\n");
return 0;
}
int cnt=n*m+n+m+1;
for (int i=1;i<=n;i++)
add(num+i,cnt,l[i]);
for (int i=1;i<=m;i++)
add(num+n+i,cnt,h[i]);
isap(0,cnt);
printf("%d\n",maxflow/2);
return 0;
}